{"title":"Two Small Peptides from <i>Buthus martensii</i> Hydrolysates Exhibit Antitumor Activity Through Inhibition of TNF-α-Mediated Signal Transduction Pathways.","authors":"Mengshuang Zhu, Shanshan Zhang, Jiyang Tang, Hairong Hou, Lizhen Wang, Houwen Lin, Xuanming Zhang, Meng Jin","doi":"10.3390/life15010105","DOIUrl":null,"url":null,"abstract":"<p><p>The scorpion <i>Buthus martensii</i> Karsch is edible and has been an essential resource in traditional Chinese medicine for treating numerous diseases. In this study, two small peptides from <i>B. martensii</i> hydrolysates were examined to elucidate their potential against gastric cancer. The small peptides (AK and GK) were identified using the LC-QTOF-MS-based approach. In silico prediction of therapeutic targets, MGC-803 cells and transgenic zebrafish models, and immunoblotting experiments were used to reveal the molecular mechanism of action of the peptides. The peptides AK and GK competitively bound to the receptor to modulate the TNF/TNFR-signaling cascade and alter the tumor microenvironment. EGFR, TP53, MYC, PTEN, and STAT3 were also identified as major functional targets of the peptides. Mechanistically, AK and GK inactivated the TNF-α/EGFR/STAT3-signaling pathway, decreased c-myc protein expression levels, and upregulated p53 and PTEN expression, thereby preventing TNF-α-induced tumor growth. Our findings indicated that AK and GK played a pivotal role in offsetting the inflammatory stimuli that caused gastric cancer cell invasion and highlighted the use of <i>B. martensii</i> resources as functional products with health benefits.</p>","PeriodicalId":56144,"journal":{"name":"Life-Basel","volume":"15 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766664/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/life15010105","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The scorpion Buthus martensii Karsch is edible and has been an essential resource in traditional Chinese medicine for treating numerous diseases. In this study, two small peptides from B. martensii hydrolysates were examined to elucidate their potential against gastric cancer. The small peptides (AK and GK) were identified using the LC-QTOF-MS-based approach. In silico prediction of therapeutic targets, MGC-803 cells and transgenic zebrafish models, and immunoblotting experiments were used to reveal the molecular mechanism of action of the peptides. The peptides AK and GK competitively bound to the receptor to modulate the TNF/TNFR-signaling cascade and alter the tumor microenvironment. EGFR, TP53, MYC, PTEN, and STAT3 were also identified as major functional targets of the peptides. Mechanistically, AK and GK inactivated the TNF-α/EGFR/STAT3-signaling pathway, decreased c-myc protein expression levels, and upregulated p53 and PTEN expression, thereby preventing TNF-α-induced tumor growth. Our findings indicated that AK and GK played a pivotal role in offsetting the inflammatory stimuli that caused gastric cancer cell invasion and highlighted the use of B. martensii resources as functional products with health benefits.
Life-BaselBiochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
4.30
自引率
6.20%
发文量
1798
审稿时长
11 weeks
期刊介绍:
Life (ISSN 2075-1729) is an international, peer-reviewed open access journal of scientific studies related to fundamental themes in Life Sciences, especially those concerned with the origins of life and evolution of biosystems. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers.