Transforming Cardiovascular Risk Prediction: A Review of Machine Learning and Artificial Intelligence Innovations.

IF 3.2 3区 生物学 Q1 BIOLOGY
Life-Basel Pub Date : 2025-01-14 DOI:10.3390/life15010094
Dimitrios-Ioannis Kasartzian, Thomas Tsiampalis
{"title":"Transforming Cardiovascular Risk Prediction: A Review of Machine Learning and Artificial Intelligence Innovations.","authors":"Dimitrios-Ioannis Kasartzian, Thomas Tsiampalis","doi":"10.3390/life15010094","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases (CVDs) remain a leading cause of global mortality and morbidity. Traditional risk prediction models, while foundational, often fail to capture the multifaceted nature of risk factors or leverage the expanding pool of healthcare data. Machine learning (ML) and artificial intelligence (AI) approaches represent a paradigm shift in risk prediction, offering dynamic, scalable solutions that integrate diverse data types. This review examines advancements in AI/ML for CVD risk prediction, analyzing their strengths, limitations, and the challenges associated with their clinical integration. Recommendations for standardization, validation, and future research directions are provided to unlock the potential of these technologies in transforming precision cardiovascular medicine.</p>","PeriodicalId":56144,"journal":{"name":"Life-Basel","volume":"15 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11766472/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/life15010094","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases (CVDs) remain a leading cause of global mortality and morbidity. Traditional risk prediction models, while foundational, often fail to capture the multifaceted nature of risk factors or leverage the expanding pool of healthcare data. Machine learning (ML) and artificial intelligence (AI) approaches represent a paradigm shift in risk prediction, offering dynamic, scalable solutions that integrate diverse data types. This review examines advancements in AI/ML for CVD risk prediction, analyzing their strengths, limitations, and the challenges associated with their clinical integration. Recommendations for standardization, validation, and future research directions are provided to unlock the potential of these technologies in transforming precision cardiovascular medicine.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Life-Basel
Life-Basel Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
4.30
自引率
6.20%
发文量
1798
审稿时长
11 weeks
期刊介绍: Life (ISSN 2075-1729) is an international, peer-reviewed open access journal of scientific studies related to fundamental themes in Life Sciences, especially those concerned with the origins of life and evolution of biosystems. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信