Advances and Mechanisms of RNA-Ligand Interaction Predictions.

IF 3.2 3区 生物学 Q1 BIOLOGY
Life-Basel Pub Date : 2025-01-15 DOI:10.3390/life15010104
Chen Zhuo, Chengwei Zeng, Haoquan Liu, Huiwen Wang, Yunhui Peng, Yunjie Zhao
{"title":"Advances and Mechanisms of RNA-Ligand Interaction Predictions.","authors":"Chen Zhuo, Chengwei Zeng, Haoquan Liu, Huiwen Wang, Yunhui Peng, Yunjie Zhao","doi":"10.3390/life15010104","DOIUrl":null,"url":null,"abstract":"<p><p>The diversity and complexity of RNA include sequence, secondary structure, and tertiary structure characteristics. These elements are crucial for RNA's specific recognition of other molecules. With advancements in biotechnology, RNA-ligand structures allow researchers to utilize experimental data to uncover the mechanisms of complex interactions. However, determining the structures of these complexes experimentally can be technically challenging and often results in low-resolution data. Many machine learning computational approaches have recently emerged to learn multiscale-level RNA features to predict the interactions. Predicting interactions remains an unexplored area. Therefore, studying RNA-ligand interactions is essential for understanding biological processes. In this review, we analyze the interaction characteristics of RNA-ligand complexes by examining RNA's sequence, secondary structure, and tertiary structure. Our goal is to clarify how RNA specifically recognizes ligands. Additionally, we systematically discuss advancements in computational methods for predicting interactions and to guide future research directions. We aim to inspire the creation of more reliable RNA-ligand interaction prediction tools.</p>","PeriodicalId":56144,"journal":{"name":"Life-Basel","volume":"15 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11767038/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/life15010104","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The diversity and complexity of RNA include sequence, secondary structure, and tertiary structure characteristics. These elements are crucial for RNA's specific recognition of other molecules. With advancements in biotechnology, RNA-ligand structures allow researchers to utilize experimental data to uncover the mechanisms of complex interactions. However, determining the structures of these complexes experimentally can be technically challenging and often results in low-resolution data. Many machine learning computational approaches have recently emerged to learn multiscale-level RNA features to predict the interactions. Predicting interactions remains an unexplored area. Therefore, studying RNA-ligand interactions is essential for understanding biological processes. In this review, we analyze the interaction characteristics of RNA-ligand complexes by examining RNA's sequence, secondary structure, and tertiary structure. Our goal is to clarify how RNA specifically recognizes ligands. Additionally, we systematically discuss advancements in computational methods for predicting interactions and to guide future research directions. We aim to inspire the creation of more reliable RNA-ligand interaction prediction tools.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Life-Basel
Life-Basel Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
4.30
自引率
6.20%
发文量
1798
审稿时长
11 weeks
期刊介绍: Life (ISSN 2075-1729) is an international, peer-reviewed open access journal of scientific studies related to fundamental themes in Life Sciences, especially those concerned with the origins of life and evolution of biosystems. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信