Yong Yue , Xiayun Wan , Guilin Liu , Tingting Zhu , Dan Xu , Mingming Zhao , Yi Cai , Rumi Murayama , Hirofumi Hashimoto , Naohiko Anzai , Kenji Hashimoto
{"title":"Subdiaphragmatic vagotomy reduces hypothalamic oxytocin expression and blood levels after oral MDMA administration in male rats","authors":"Yong Yue , Xiayun Wan , Guilin Liu , Tingting Zhu , Dan Xu , Mingming Zhao , Yi Cai , Rumi Murayama , Hirofumi Hashimoto , Naohiko Anzai , Kenji Hashimoto","doi":"10.1016/j.pnpbp.2025.111260","DOIUrl":null,"url":null,"abstract":"<div><div>3,4-Methylenedioxymethamphetamine (MDMA) is a widely recognized entactogen frequently used recreationally. It is known for its interaction with the serotonin and oxytocin systems, which underlie its entactogenic effects in humans. Recently, we demonstrated that the gut-brain axis, mediated by the subdiaphragmatic vagus nerve, contributes to MDMA-induced resilience enhancement in rodents. This study investigates whether subdiaphragmatic vagotomy (SDV) affects plasma oxytocin levels and the expression of oxytocin and c-Fos in the hypothalamus following a single oral dose of MDMA in rats. SDV significantly reduced baseline plasma oxytocin levels and oxytocin expression in the paraventricular and supraoptic nuclei of the hypothalamus. Furthermore, SDV markedly attenuated MDMA-induced increases in plasma oxytocin and the expression of oxytocin and c-Fos in these hypothalamic regions. These findings suggest that the subdiaphragmatic vagus nerve plays a critical role in brain-body communication, mediating MDMA's pharmacological effects on the oxytocin system.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"137 ","pages":"Article 111260"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584625000144","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is a widely recognized entactogen frequently used recreationally. It is known for its interaction with the serotonin and oxytocin systems, which underlie its entactogenic effects in humans. Recently, we demonstrated that the gut-brain axis, mediated by the subdiaphragmatic vagus nerve, contributes to MDMA-induced resilience enhancement in rodents. This study investigates whether subdiaphragmatic vagotomy (SDV) affects plasma oxytocin levels and the expression of oxytocin and c-Fos in the hypothalamus following a single oral dose of MDMA in rats. SDV significantly reduced baseline plasma oxytocin levels and oxytocin expression in the paraventricular and supraoptic nuclei of the hypothalamus. Furthermore, SDV markedly attenuated MDMA-induced increases in plasma oxytocin and the expression of oxytocin and c-Fos in these hypothalamic regions. These findings suggest that the subdiaphragmatic vagus nerve plays a critical role in brain-body communication, mediating MDMA's pharmacological effects on the oxytocin system.
期刊介绍:
Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject.
Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.