Total population for a resource-limited single consumer model.

IF 2.2 4区 数学 Q2 BIOLOGY
Xiaoqing He, Wei-Ming Ni, Zihan Ye, Bo Zhang
{"title":"Total population for a resource-limited single consumer model.","authors":"Xiaoqing He, Wei-Ming Ni, Zihan Ye, Bo Zhang","doi":"10.1007/s00285-025-02186-0","DOIUrl":null,"url":null,"abstract":"<p><p>In the past several decades, much attention has been focused on the effects of dispersal on total populations of species. In Zhang (EL 20:1118-1128, 2017), a rigorous biological experiment was performed to confirm the mathematical conclusion: Dispersal tends to enhance populations under a suitable hypothesis. In addition, mathematical models keeping track of resource dynamics in population growth were also proposed in Zhang (EL 20:1118-1128, 2017) to understand this remarkable phenomenon. In these models, the self-regulated quantity \"loss rate\" of the population seems, in general, difficult to measure experimentally. Our main goal in this paper is to study the effects of relations between the loss rate and the resources, the role of dispersal, and the impact of their interactions on total populations. We compare the total population for small and large diffusion under various correlations between loss rate and the resources. Biological evidence seems to support some specific correlations between the loss rate and the resources.</p>","PeriodicalId":50148,"journal":{"name":"Journal of Mathematical Biology","volume":"90 2","pages":"20"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00285-025-02186-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the past several decades, much attention has been focused on the effects of dispersal on total populations of species. In Zhang (EL 20:1118-1128, 2017), a rigorous biological experiment was performed to confirm the mathematical conclusion: Dispersal tends to enhance populations under a suitable hypothesis. In addition, mathematical models keeping track of resource dynamics in population growth were also proposed in Zhang (EL 20:1118-1128, 2017) to understand this remarkable phenomenon. In these models, the self-regulated quantity "loss rate" of the population seems, in general, difficult to measure experimentally. Our main goal in this paper is to study the effects of relations between the loss rate and the resources, the role of dispersal, and the impact of their interactions on total populations. We compare the total population for small and large diffusion under various correlations between loss rate and the resources. Biological evidence seems to support some specific correlations between the loss rate and the resources.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
5.30%
发文量
120
审稿时长
6 months
期刊介绍: The Journal of Mathematical Biology focuses on mathematical biology - work that uses mathematical approaches to gain biological understanding or explain biological phenomena. Areas of biology covered include, but are not restricted to, cell biology, physiology, development, neurobiology, genetics and population genetics, population biology, ecology, behavioural biology, evolution, epidemiology, immunology, molecular biology, biofluids, DNA and protein structure and function. All mathematical approaches including computational and visualization approaches are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信