Ranjan K Maji, Matthias S Leisegang, Reinier A Boon, Marcel H Schulz
{"title":"Revealing microRNA regulation in single cells.","authors":"Ranjan K Maji, Matthias S Leisegang, Reinier A Boon, Marcel H Schulz","doi":"10.1016/j.tig.2024.12.009","DOIUrl":null,"url":null,"abstract":"<p><p>MicroRNAs (miRNAs) are key regulators of gene expression and control cellular functions in physiological and pathophysiological states. miRNAs play important roles in disease, stress, and development, and are now being investigated for therapeutic approaches. Alternative processing of miRNAs during biogenesis results in the generation of miRNA isoforms (isomiRs) which further diversify miRNA gene regulation. Single-cell RNA-sequencing (scsRNA-seq) technologies, together with computational strategies, enable exploration of miRNAs, isomiRs, and interacting RNAs at the cellular level. By integration with other miRNA-associated single-cell modalities, miRNA roles can be resolved at different stages of processing and regulation. In this review we discuss (i) single-cell experimental assays that measure miRNA and isomiR abundances, and (ii) computational methods for their analysis to investigate the mechanisms of miRNA biogenesis and post-transcriptional regulation.</p>","PeriodicalId":54413,"journal":{"name":"Trends in Genetics","volume":" ","pages":""},"PeriodicalIF":13.6000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tig.2024.12.009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression and control cellular functions in physiological and pathophysiological states. miRNAs play important roles in disease, stress, and development, and are now being investigated for therapeutic approaches. Alternative processing of miRNAs during biogenesis results in the generation of miRNA isoforms (isomiRs) which further diversify miRNA gene regulation. Single-cell RNA-sequencing (scsRNA-seq) technologies, together with computational strategies, enable exploration of miRNAs, isomiRs, and interacting RNAs at the cellular level. By integration with other miRNA-associated single-cell modalities, miRNA roles can be resolved at different stages of processing and regulation. In this review we discuss (i) single-cell experimental assays that measure miRNA and isomiR abundances, and (ii) computational methods for their analysis to investigate the mechanisms of miRNA biogenesis and post-transcriptional regulation.
期刊介绍:
Launched in 1985, Trends in Genetics swiftly established itself as a "must-read" for geneticists, offering concise, accessible articles covering a spectrum of topics from developmental biology to evolution. This reputation endures, making TiG a cherished resource in the genetic research community. While evolving with the field, the journal now embraces new areas like genomics, epigenetics, and computational genetics, alongside its continued coverage of traditional subjects such as transcriptional regulation, population genetics, and chromosome biology.
Despite expanding its scope, the core objective of TiG remains steadfast: to furnish researchers and students with high-quality, innovative reviews, commentaries, and discussions, fostering an appreciation for advances in genetic research. Each issue of TiG presents lively and up-to-date Reviews and Opinions, alongside shorter articles like Science & Society and Spotlight pieces. Invited from leading researchers, Reviews objectively chronicle recent developments, Opinions provide a forum for debate and hypothesis, and shorter articles explore the intersection of genetics with science and policy, as well as emerging ideas in the field. All articles undergo rigorous peer-review.