Reducing bias in source-free unsupervised domain adaptation for regression.

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Qianshan Zhan, Xiao-Jun Zeng, Qian Wang
{"title":"Reducing bias in source-free unsupervised domain adaptation for regression.","authors":"Qianshan Zhan, Xiao-Jun Zeng, Qian Wang","doi":"10.1016/j.neunet.2025.107161","DOIUrl":null,"url":null,"abstract":"<p><p>Due to data privacy and storage concerns, Source-Free Unsupervised Domain Adaptation (SFUDA) focuses on improving an unlabelled target domain by leveraging a pre-trained source model without access to source data. While existing studies attempt to train target models by mitigating biases induced by noisy pseudo labels, they often lack theoretical guarantees for fully reducing biases and have predominantly addressed classification tasks rather than regression ones. To address these gaps, our analysis delves into the generalisation error bound of the target model, aiming to understand the intrinsic limitations of pseudo-label-based SFUDA methods. Theoretical results reveal that biases influencing generalisation error extend beyond the commonly highlighted label inconsistency bias, which denotes the mismatch between pseudo labels and ground truths, and the feature-label mapping bias, which represents the difference between the proxy target regressor and the real target regressor. Equally significant is the feature misalignment bias, indicating the misalignment between the estimated and real target feature distributions. This factor is frequently neglected or not explicitly addressed in current studies. Additionally, the label inconsistency bias can be unbounded in regression due to the continuous label space, further complicating SFUDA for regression tasks. Guided by these theoretical insights, we propose a Bias-Reduced Regression (BRR) method for SFUDA in regression. This method incorporates Feature Distribution Alignment (FDA) to reduce the feature misalignment bias, Hybrid Reliability Evaluation (HRE) to reduce the feature-label mapping bias and pseudo label updating to mitigate the label inconsistency bias. Experiments demonstrate the superior performance of the proposed BRR, and the effectiveness of FDA and HRE in reducing biases for regression tasks in SFUDA.</p>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"107161"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1016/j.neunet.2025.107161","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Due to data privacy and storage concerns, Source-Free Unsupervised Domain Adaptation (SFUDA) focuses on improving an unlabelled target domain by leveraging a pre-trained source model without access to source data. While existing studies attempt to train target models by mitigating biases induced by noisy pseudo labels, they often lack theoretical guarantees for fully reducing biases and have predominantly addressed classification tasks rather than regression ones. To address these gaps, our analysis delves into the generalisation error bound of the target model, aiming to understand the intrinsic limitations of pseudo-label-based SFUDA methods. Theoretical results reveal that biases influencing generalisation error extend beyond the commonly highlighted label inconsistency bias, which denotes the mismatch between pseudo labels and ground truths, and the feature-label mapping bias, which represents the difference between the proxy target regressor and the real target regressor. Equally significant is the feature misalignment bias, indicating the misalignment between the estimated and real target feature distributions. This factor is frequently neglected or not explicitly addressed in current studies. Additionally, the label inconsistency bias can be unbounded in regression due to the continuous label space, further complicating SFUDA for regression tasks. Guided by these theoretical insights, we propose a Bias-Reduced Regression (BRR) method for SFUDA in regression. This method incorporates Feature Distribution Alignment (FDA) to reduce the feature misalignment bias, Hybrid Reliability Evaluation (HRE) to reduce the feature-label mapping bias and pseudo label updating to mitigate the label inconsistency bias. Experiments demonstrate the superior performance of the proposed BRR, and the effectiveness of FDA and HRE in reducing biases for regression tasks in SFUDA.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信