Host RNA-Binding Proteins as Regulators of HIV-1 Replication.

IF 3.8 3区 医学 Q2 VIROLOGY
Viruses-Basel Pub Date : 2024-12-31 DOI:10.3390/v17010043
Sebastian Giraldo-Ocampo, Fernando Valiente-Echeverría, Ricardo Soto-Rifo
{"title":"Host RNA-Binding Proteins as Regulators of HIV-1 Replication.","authors":"Sebastian Giraldo-Ocampo, Fernando Valiente-Echeverría, Ricardo Soto-Rifo","doi":"10.3390/v17010043","DOIUrl":null,"url":null,"abstract":"<p><p>RNA-binding proteins (RBPs) are cellular factors involved in every step of RNA metabolism. During HIV-1 infection, these proteins are key players in the fine-tuning of viral and host cellular and molecular pathways, including (but not limited to) viral entry, transcription, splicing, RNA modification, translation, decay, assembly, and packaging, as well as the modulation of the antiviral response. Targeted studies have been of paramount importance in identifying and understanding the role of RNA-binding proteins that bind to HIV-1 RNAs. However, novel approaches aimed at identifying all the proteins bound to specific RNAs (RBPome), such as RNA interactome capture, have also contributed to expanding our understanding of the HIV-1 replication cycle, allowing the identification of RBPs with functions not only in viral RNA metabolism but also in cellular metabolism. Strikingly, several of the RBPs found through interactome capture are not canonical RBPs, meaning that they do not have conventional RNA-binding domains and are therefore not readily predicted as being RBPs. Further studies on the different cellular targets of HIV-1, such as subtypes of T cells or myeloid cells, or on the context (active replication versus reactivation from latency) are needed to fully elucidate the host RBPome bound to the viral RNA, which will allow researchers and clinicians to discover new therapeutic targets during active replication and provirus reactivation from latency.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768693/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17010043","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

RNA-binding proteins (RBPs) are cellular factors involved in every step of RNA metabolism. During HIV-1 infection, these proteins are key players in the fine-tuning of viral and host cellular and molecular pathways, including (but not limited to) viral entry, transcription, splicing, RNA modification, translation, decay, assembly, and packaging, as well as the modulation of the antiviral response. Targeted studies have been of paramount importance in identifying and understanding the role of RNA-binding proteins that bind to HIV-1 RNAs. However, novel approaches aimed at identifying all the proteins bound to specific RNAs (RBPome), such as RNA interactome capture, have also contributed to expanding our understanding of the HIV-1 replication cycle, allowing the identification of RBPs with functions not only in viral RNA metabolism but also in cellular metabolism. Strikingly, several of the RBPs found through interactome capture are not canonical RBPs, meaning that they do not have conventional RNA-binding domains and are therefore not readily predicted as being RBPs. Further studies on the different cellular targets of HIV-1, such as subtypes of T cells or myeloid cells, or on the context (active replication versus reactivation from latency) are needed to fully elucidate the host RBPome bound to the viral RNA, which will allow researchers and clinicians to discover new therapeutic targets during active replication and provirus reactivation from latency.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Viruses-Basel
Viruses-Basel VIROLOGY-
CiteScore
7.30
自引率
12.80%
发文量
2445
审稿时长
1 months
期刊介绍: Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信