When low-light meets flares: Towards Synchronous Flare Removal and Brightness Enhancement

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jiahuan Ren , Zhao Zhang , Suiyi Zhao , Jicong Fan , Zhongqiu Zhao , Yang Zhao , Richang Hong , Meng Wang
{"title":"When low-light meets flares: Towards Synchronous Flare Removal and Brightness Enhancement","authors":"Jiahuan Ren ,&nbsp;Zhao Zhang ,&nbsp;Suiyi Zhao ,&nbsp;Jicong Fan ,&nbsp;Zhongqiu Zhao ,&nbsp;Yang Zhao ,&nbsp;Richang Hong ,&nbsp;Meng Wang","doi":"10.1016/j.neunet.2025.107149","DOIUrl":null,"url":null,"abstract":"<div><div>Low-light image enhancement (LLIE) aims to improve the visibility and illumination of low-light images. However, real-world low-light images are usually accompanied with flares caused by light sources, which make it difficult to discern the content of dark images. In this case, current LLIE and nighttime flare removal methods face challenges in handling these flared low-light images effectively: (1) Flares in dark images will disturb the content of images and cause uneven lighting, potentially resulting in overexposure or chromatic aberration; (2) the slight noise in low-light images may be amplified during the process of enhancement, leading to speckle noise and blur in the enhanced images; (3) the nighttime flare removal methods usually ignore the detailed information in dark regions, which may cause inaccurate representation. To tackle the above challenges yet meaningful problems well, we propose a novel image enhancement task called Flared Low-Light Image Enhancement (FLLIE). We first synthesize several flared low-light datasets as the training/inference data, based on which we develop a novel Fourier transform-based deep FLLIE network termed Synchronous Flare Removal and Brightness Enhancement (SFRBE). Specifically, a Residual Directional Fourier Block (RDFB) is introduced that learns in the frequency domain to extract accurate global information and capture detailed features from multiple directions. Extensive experiments on three flared low-light datasets and some real flared low-light images demonstrate the effectiveness of SFRBE for FLLIE.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"185 ","pages":"Article 107149"},"PeriodicalIF":6.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025000280","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Low-light image enhancement (LLIE) aims to improve the visibility and illumination of low-light images. However, real-world low-light images are usually accompanied with flares caused by light sources, which make it difficult to discern the content of dark images. In this case, current LLIE and nighttime flare removal methods face challenges in handling these flared low-light images effectively: (1) Flares in dark images will disturb the content of images and cause uneven lighting, potentially resulting in overexposure or chromatic aberration; (2) the slight noise in low-light images may be amplified during the process of enhancement, leading to speckle noise and blur in the enhanced images; (3) the nighttime flare removal methods usually ignore the detailed information in dark regions, which may cause inaccurate representation. To tackle the above challenges yet meaningful problems well, we propose a novel image enhancement task called Flared Low-Light Image Enhancement (FLLIE). We first synthesize several flared low-light datasets as the training/inference data, based on which we develop a novel Fourier transform-based deep FLLIE network termed Synchronous Flare Removal and Brightness Enhancement (SFRBE). Specifically, a Residual Directional Fourier Block (RDFB) is introduced that learns in the frequency domain to extract accurate global information and capture detailed features from multiple directions. Extensive experiments on three flared low-light datasets and some real flared low-light images demonstrate the effectiveness of SFRBE for FLLIE.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信