Emerging Roles of TRIM56 in Antiviral Innate Immunity.

IF 3.8 3区 医学 Q2 VIROLOGY
Viruses-Basel Pub Date : 2025-01-07 DOI:10.3390/v17010072
Dang Wang, Kui Li
{"title":"Emerging Roles of TRIM56 in Antiviral Innate Immunity.","authors":"Dang Wang, Kui Li","doi":"10.3390/v17010072","DOIUrl":null,"url":null,"abstract":"<p><p>The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains. Apart from exerting direct, restrictive effects on viral propagation, TRIM56 is implicated in regulating innate immune signaling pathways that orchestrate type I interferon response or autophagy, through which it indirectly impacts viral fitness. Remarkably, depending on viral infection settings, TRIM56 either operates in a canonical, E3 ligase-dependent fashion or adopts an enzymatically independent, non-canonical mechanism to bolster innate immune signaling. Moreover, the recent revelation that TRIM56 is an RNA-binding protein sheds new light on its antiviral mechanisms against RNA viruses. This review summarizes recent advances in the emerging roles of TRIM56 in innate antiviral immunity. We focus on its direct virus-restricting effects and its influence on innate immune signaling through two critical pathways: the endolysosome-initiated, double-stranded RNA-sensing TLR3-TRIF pathway and the cytosolic DNA-sensing, cGAS-STING pathway. We discuss the underpinning mechanisms of action and the questions that remain. Further studies understanding the complexity of TRIM56 involvement in innate immunity will add to critical knowledge that could be leveraged for developing antiviral therapeutics.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768893/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17010072","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The tripartite-motif protein 56 (TRIM56) is a RING-type E3 ubiquitin ligase whose functions were recently beginning to be unveiled. While the physiological role(s) of TRIM56 remains unclear, emerging evidence suggests this protein participates in host innate defense mechanisms that guard against viral infections. Interestingly, TRIM56 has been shown to pose a barrier to viruses of distinct families by utilizing its different domains. Apart from exerting direct, restrictive effects on viral propagation, TRIM56 is implicated in regulating innate immune signaling pathways that orchestrate type I interferon response or autophagy, through which it indirectly impacts viral fitness. Remarkably, depending on viral infection settings, TRIM56 either operates in a canonical, E3 ligase-dependent fashion or adopts an enzymatically independent, non-canonical mechanism to bolster innate immune signaling. Moreover, the recent revelation that TRIM56 is an RNA-binding protein sheds new light on its antiviral mechanisms against RNA viruses. This review summarizes recent advances in the emerging roles of TRIM56 in innate antiviral immunity. We focus on its direct virus-restricting effects and its influence on innate immune signaling through two critical pathways: the endolysosome-initiated, double-stranded RNA-sensing TLR3-TRIF pathway and the cytosolic DNA-sensing, cGAS-STING pathway. We discuss the underpinning mechanisms of action and the questions that remain. Further studies understanding the complexity of TRIM56 involvement in innate immunity will add to critical knowledge that could be leveraged for developing antiviral therapeutics.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Viruses-Basel
Viruses-Basel VIROLOGY-
CiteScore
7.30
自引率
12.80%
发文量
2445
审稿时长
1 months
期刊介绍: Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信