Puerarin Promotes the Migration and Differentiation of Myoblasts by Activating the FAK and PI3K/AKT Signaling Pathways.

IF 3.6 3区 生物学 Q1 BIOLOGY
Xiaofeng Fang, Hangjia Xu, Zhaoxin Fan, Hongge Yang, Yan Huang, Lin Xu, Yiwei Rong, Wei Ma, Liubao Pei, Hongsheng Liang
{"title":"Puerarin Promotes the Migration and Differentiation of Myoblasts by Activating the FAK and PI3K/AKT Signaling Pathways.","authors":"Xiaofeng Fang, Hangjia Xu, Zhaoxin Fan, Hongge Yang, Yan Huang, Lin Xu, Yiwei Rong, Wei Ma, Liubao Pei, Hongsheng Liang","doi":"10.3390/biology14010102","DOIUrl":null,"url":null,"abstract":"<p><p>Puerarin, a flavonoid compound present in the roots of radix <i>puerariae</i>, contributes to the development of tissues such as bone and nerve, but its role in skeletal muscle regeneration remains unclear. In this study, we employed C2C12 myoblasts and barium chloride (BaCl<sub>2</sub>)-based muscle injury models to investigate the effects of puerarin on myogenesis. Our study showed that puerarin stimulated the migration and differentiation of myoblasts in vitro. For the mechanism study, we found that puerarin's influence on cell migration was associated with the activation of FAK signaling; additionally, puerarin induced myoblast differentiation by upregulating the PI3K/AKT pathway. We also found that puerarin treatment could improve muscle regeneration following muscle injury. Taken together, our data indicate that puerarin facilitated myogenesis by promoting migration and differentiation, which suggests puerarin as a new candidate drug for the treatment of muscle loss diseases.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763015/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14010102","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Puerarin, a flavonoid compound present in the roots of radix puerariae, contributes to the development of tissues such as bone and nerve, but its role in skeletal muscle regeneration remains unclear. In this study, we employed C2C12 myoblasts and barium chloride (BaCl2)-based muscle injury models to investigate the effects of puerarin on myogenesis. Our study showed that puerarin stimulated the migration and differentiation of myoblasts in vitro. For the mechanism study, we found that puerarin's influence on cell migration was associated with the activation of FAK signaling; additionally, puerarin induced myoblast differentiation by upregulating the PI3K/AKT pathway. We also found that puerarin treatment could improve muscle regeneration following muscle injury. Taken together, our data indicate that puerarin facilitated myogenesis by promoting migration and differentiation, which suggests puerarin as a new candidate drug for the treatment of muscle loss diseases.

葛根素是一种存在于葛根中的黄酮类化合物,有助于骨骼和神经等组织的发育,但其在骨骼肌再生中的作用仍不清楚。在这项研究中,我们利用 C2C12 肌母细胞和基于氯化钡(BaCl2)的肌肉损伤模型来研究葛根素对肌肉生成的影响。研究表明,葛根素能刺激体外肌母细胞的迁移和分化。在机制研究方面,我们发现葛根素对细胞迁移的影响与FAK信号的激活有关;此外,葛根素还通过上调PI3K/AKT通路诱导成肌细胞分化。我们还发现葛根素能改善肌肉损伤后的肌肉再生。综上所述,我们的数据表明葛根素可通过促进迁移和分化来促进肌肉生成,这表明葛根素是治疗肌肉缺失疾病的一种新的候选药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信