Intraspecific Morphometric Variation in a New Species of Ceratomyxa Thélohan 1892 (Cnidaria) from the South Atlantic Ocean: An Ecomorphological Study Using Geometric Morphometrics.

IF 3.6 3区 生物学 Q1 BIOLOGY
Delfina M P Cantatore, Martina Lisnerová, Paula S Marcotegui, María A Rossin, Astrid S Holzer
{"title":"Intraspecific Morphometric Variation in a New Species of <i>Ceratomyxa</i> Thélohan 1892 (Cnidaria) from the South Atlantic Ocean: An Ecomorphological Study Using Geometric Morphometrics.","authors":"Delfina M P Cantatore, Martina Lisnerová, Paula S Marcotegui, María A Rossin, Astrid S Holzer","doi":"10.3390/biology14010079","DOIUrl":null,"url":null,"abstract":"<p><p>A new species of <i>Ceratomyxa</i> (Ceratomyxidae, Myxosporea) was found infecting the gall bladder of the Argentine croaker <i>Umbrina canosai</i> Berg 1895 (Sciaenidae, Perciformes) from the Argentine sea. Using an integrative taxonomic approach that combines morphological, bioecological, and molecular analyses, we provide evidence that clearly differentiates this species from known taxa and formally describe <i>Ceratomyxa fialai</i> as a new species. This study is the first to apply landmark-based geometric morphometrics (GM) in myxozoan research, providing a detailed analysis of conspecific morphometric variation of ceratomyxid myxospores, examining their natural variation within and among different ceratomyxids infecting the gall bladder of <i>U. canosai</i>. Using GM analyses, we successfully capture and quantify phenotypic variation at the organismal level. Our results suggest that myxospore shape variation may be driven by both developmental noise and phenotypic plasticity. The work highlights the utility of GM in advancing the understanding of myxozoan morphology and its evolutionary implications and emphasizes the need for further research on myxospore shape evolution and its ecological and adaptive significance in natural populations.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11760875/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14010079","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A new species of Ceratomyxa (Ceratomyxidae, Myxosporea) was found infecting the gall bladder of the Argentine croaker Umbrina canosai Berg 1895 (Sciaenidae, Perciformes) from the Argentine sea. Using an integrative taxonomic approach that combines morphological, bioecological, and molecular analyses, we provide evidence that clearly differentiates this species from known taxa and formally describe Ceratomyxa fialai as a new species. This study is the first to apply landmark-based geometric morphometrics (GM) in myxozoan research, providing a detailed analysis of conspecific morphometric variation of ceratomyxid myxospores, examining their natural variation within and among different ceratomyxids infecting the gall bladder of U. canosai. Using GM analyses, we successfully capture and quantify phenotypic variation at the organismal level. Our results suggest that myxospore shape variation may be driven by both developmental noise and phenotypic plasticity. The work highlights the utility of GM in advancing the understanding of myxozoan morphology and its evolutionary implications and emphasizes the need for further research on myxospore shape evolution and its ecological and adaptive significance in natural populations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信