Climate Projections and Pacific Lamprey Conservation: Evidence That Larvae in Natural Conditions May Be Resilient to Climate Warming.

IF 3.6 3区 生物学 Q1 BIOLOGY
Timothy A Whitesel, Paul M Sankovich
{"title":"Climate Projections and Pacific Lamprey Conservation: Evidence That Larvae in Natural Conditions May Be Resilient to Climate Warming.","authors":"Timothy A Whitesel, Paul M Sankovich","doi":"10.3390/biology14010074","DOIUrl":null,"url":null,"abstract":"<p><p>In many areas where larval Pacific lampreys currently rear, maximum stream temperatures may approach 27-31 °C during the next 75 years. Whether larval Pacific lampreys in natural conditions can tolerate these temperatures is unknown. To evaluate this ability, we conducted Direct Acute Exposure (DAE) experiments using simulated natural daily temperature (SNT) cycles in the laboratory and occupancy surveys in the Umatilla River (river). When evaluated relative to daily maximum temperatures, after seven days in DAE experiments, 78-100% of larvae survived in 29.1 °C, only larvae acclimated to 26.8 °C survived in 31.0 °C, and no larvae survived in 33.6 °C. Based on daily maximum temperatures, the ultimate upper incipient lethal temperature was estimated to be >30.8 °C using a time to death analysis and >32.0 °C using a percent mortality analysis. Some larvae acclimated to 31.0 °C were also able to survive four consecutive days with a daily maximum temperature of 33.6 °C. In 2018-2020, warm areas of the river experienced maximum temperatures in July and August that ranged from 27.7 to 33.9 °C, while cool areas experienced maximum temperatures <27.7 °C. Before, during and after the period of maximum temperatures each year, larvae occupied both areas. Detection probabilities ranged from 0.83 to 1.00 and were similar for each area and for all survey periods. This work suggests that ectothermic, larval Pacific lampreys in natural environments may be resilient to the water temperatures that are likely to result from climate warming. It is unclear whether relatively high but sublethal temperatures may impact the behavior, and ultimately survival, of larval Pacific lampreys.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761618/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14010074","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In many areas where larval Pacific lampreys currently rear, maximum stream temperatures may approach 27-31 °C during the next 75 years. Whether larval Pacific lampreys in natural conditions can tolerate these temperatures is unknown. To evaluate this ability, we conducted Direct Acute Exposure (DAE) experiments using simulated natural daily temperature (SNT) cycles in the laboratory and occupancy surveys in the Umatilla River (river). When evaluated relative to daily maximum temperatures, after seven days in DAE experiments, 78-100% of larvae survived in 29.1 °C, only larvae acclimated to 26.8 °C survived in 31.0 °C, and no larvae survived in 33.6 °C. Based on daily maximum temperatures, the ultimate upper incipient lethal temperature was estimated to be >30.8 °C using a time to death analysis and >32.0 °C using a percent mortality analysis. Some larvae acclimated to 31.0 °C were also able to survive four consecutive days with a daily maximum temperature of 33.6 °C. In 2018-2020, warm areas of the river experienced maximum temperatures in July and August that ranged from 27.7 to 33.9 °C, while cool areas experienced maximum temperatures <27.7 °C. Before, during and after the period of maximum temperatures each year, larvae occupied both areas. Detection probabilities ranged from 0.83 to 1.00 and were similar for each area and for all survey periods. This work suggests that ectothermic, larval Pacific lampreys in natural environments may be resilient to the water temperatures that are likely to result from climate warming. It is unclear whether relatively high but sublethal temperatures may impact the behavior, and ultimately survival, of larval Pacific lampreys.

在太平洋灯鱼幼鱼目前觅食的许多地区,未来 75 年内溪流的最高温度可能接近 27-31 °C。太平洋灯鱼幼体在自然条件下能否承受这样的温度尚不清楚。为了评估这种能力,我们在实验室中使用模拟自然日温度周期(SNT)进行了直接急性暴露(DAE)实验,并在乌马蒂拉河(河流)中进行了占位调查。根据日最高温度进行评估,DAE 实验中,7 天后,78%-100% 的幼虫在 29.1 °C 下存活,只有适应 26.8 °C 的幼虫在 31.0 °C 下存活,没有幼虫在 33.6 °C 下存活。根据日最高气温,采用死亡时间分析法,估计最终的萌发致死上限温度>30.8 °C;采用死亡率百分比分析法,估计最终的萌发致死上限温度>32.0 °C。一些适应 31.0 °C温度的幼虫也能在日最高温度为 33.6 °C的情况下连续存活四天。2018-2020 年,河流温暖地区 7 月和 8 月的最高气温介于 27.7 到 33.9 °C,而凉爽地区的最高气温为
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology-Basel
Biology-Basel Biological Science-Biological Science
CiteScore
5.70
自引率
4.80%
发文量
1618
审稿时长
11 weeks
期刊介绍: Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信