{"title":"Genomic, Evolutionary, and Pathogenic Characterization of a New <i>Polerovirus</i> in Traditional Chinese Medicine <i>Viola philippica</i>.","authors":"Yuanling Chen, Gaoxiang Chen, Jiaping Yu, Yali Zhou, Shifang Fei, Haorong Chen, Jianxiang Wu, Shuai Fu","doi":"10.3390/v17010114","DOIUrl":null,"url":null,"abstract":"<p><p><i>Viola philippica</i>, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of <i>V. philippica</i> remains limited. In this study, <i>V. philippica</i> plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens. A novel polerovirus, named Viola Philippica Polerovirus (VPPV), was identified in <i>V. philippica</i>. VPPV possesses a linear, positive-sense, single-stranded RNA genome consisting of 5535 nucleotides (nt) and encodes seven highly overlapping open reading frames (ORFs). Two potential recombination events were identified within ORF2, ORF3a, and ORF3, providing insights into the genetic diversity and evolution history of this novel polerovirus. An infectious cDNA clone of VPPV was successfully constructed and shown to infect <i>Nicotiana benthamiana</i>. Using a PVX-based heterologous expression system, the VPPV P0 protein was shown to trigger a systemic hypersensitive response (HR)-like reaction in <i>N. benthamiana</i>, indicating that P0 functions as the main pathogenicity determinant. These findings contributed to the detection and understanding of pathogenic mechanisms and control strategies for VPPV in <i>V. philippica</i>.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768663/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17010114","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Viola philippica, a medicinal herbaceous plant documented in the Chinese Pharmacopoeia, is a promising candidate for research into plant-derived pharmaceuticals. However, the study of newly emerging viruses that threaten the cultivation of V. philippica remains limited. In this study, V. philippica plants exhibiting symptoms such as leaf yellowing, mottled leaves, and vein chlorosis were collected and subjected to RNA sequencing to identify potential viral pathogens. A novel polerovirus, named Viola Philippica Polerovirus (VPPV), was identified in V. philippica. VPPV possesses a linear, positive-sense, single-stranded RNA genome consisting of 5535 nucleotides (nt) and encodes seven highly overlapping open reading frames (ORFs). Two potential recombination events were identified within ORF2, ORF3a, and ORF3, providing insights into the genetic diversity and evolution history of this novel polerovirus. An infectious cDNA clone of VPPV was successfully constructed and shown to infect Nicotiana benthamiana. Using a PVX-based heterologous expression system, the VPPV P0 protein was shown to trigger a systemic hypersensitive response (HR)-like reaction in N. benthamiana, indicating that P0 functions as the main pathogenicity determinant. These findings contributed to the detection and understanding of pathogenic mechanisms and control strategies for VPPV in V. philippica.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.