Christa Hohoff, Nicole Kerkenberg, Mingyue Zhang, Weronika Palkowska, Lydia Wachsmuth, Maja Peng, Lena Stiehl, Christiane Schettler, Johannes C S Zang, Andreas Huge, Evgeni Ponimaskin, Cornelius Faber, Bernhard T Baune, Weiqi Zhang
{"title":"Deficiency of the palmitoyl acyltransferase ZDHHC7 modulates depression-like behaviour in female mice after a mild chronic stress paradigm.","authors":"Christa Hohoff, Nicole Kerkenberg, Mingyue Zhang, Weronika Palkowska, Lydia Wachsmuth, Maja Peng, Lena Stiehl, Christiane Schettler, Johannes C S Zang, Andreas Huge, Evgeni Ponimaskin, Cornelius Faber, Bernhard T Baune, Weiqi Zhang","doi":"10.1038/s41398-025-03240-7","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic stress (CS) is a debilitating condition that negatively affects body and brain. In mice, CS effects range from changes in behaviour and brain microstructure down to the level of gene expression. These effects are partly mediated by sex and sex steroid hormones, which in turn are affected by the palmitoyl acyltransferase ZDHHC7. ZDHHC7 might modulate also the response to CS via palmitoylation of sex steroid hormone receptors and other proteins critical for neuronal structure and functions. Therefore, we aimed to investigate the role of ZDHHC7 in response to CS on different system levels in a mouse model of Zdhhc7-deficiency. Female and male Zdhhc7-knockout (KO) and -wildtype (WT) mice underwent a four-week-mild CS paradigm or non-stress control (C) condition. After C or CS, behaviours, hippocampal microstructures (via MRI-based diffusion tensor imaging) and brain gene expression profiles (via mRNA-seq transcriptomics) were investigated. Analyses focused on effects of genotype (KO vs. WT) or condition (C vs. CS) separately in both sexes. Our results revealed significant effects particularly in females. Female KOs displayed increased locomotion and reduced depression-like behaviour after CS (KO vs. WT, C vs. CS: p<sub>all</sub> < 0.05). Hippocampal fibres were reduced in female KOs after C (KO vs. WT: p<sub>all</sub> < 0.05) but in female WTs after CS (C vs. CS: p<sub>all</sub> < 0.05). Furthermore, female KOs showed increased cortistatin expression after CS (C vs. CS: mRNAseq and qPCR p<sub>all</sub> < 0.05). In sum, Zdhhc7-deficiency reduced depression-like behaviours, prevented hippocampal fibre reduction and upregulated cortistatin after CS. It seemed to be related to a sex-specific stress response and may reveal genetic factors of CS-resilience in female mice.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"20"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759705/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03240-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic stress (CS) is a debilitating condition that negatively affects body and brain. In mice, CS effects range from changes in behaviour and brain microstructure down to the level of gene expression. These effects are partly mediated by sex and sex steroid hormones, which in turn are affected by the palmitoyl acyltransferase ZDHHC7. ZDHHC7 might modulate also the response to CS via palmitoylation of sex steroid hormone receptors and other proteins critical for neuronal structure and functions. Therefore, we aimed to investigate the role of ZDHHC7 in response to CS on different system levels in a mouse model of Zdhhc7-deficiency. Female and male Zdhhc7-knockout (KO) and -wildtype (WT) mice underwent a four-week-mild CS paradigm or non-stress control (C) condition. After C or CS, behaviours, hippocampal microstructures (via MRI-based diffusion tensor imaging) and brain gene expression profiles (via mRNA-seq transcriptomics) were investigated. Analyses focused on effects of genotype (KO vs. WT) or condition (C vs. CS) separately in both sexes. Our results revealed significant effects particularly in females. Female KOs displayed increased locomotion and reduced depression-like behaviour after CS (KO vs. WT, C vs. CS: pall < 0.05). Hippocampal fibres were reduced in female KOs after C (KO vs. WT: pall < 0.05) but in female WTs after CS (C vs. CS: pall < 0.05). Furthermore, female KOs showed increased cortistatin expression after CS (C vs. CS: mRNAseq and qPCR pall < 0.05). In sum, Zdhhc7-deficiency reduced depression-like behaviours, prevented hippocampal fibre reduction and upregulated cortistatin after CS. It seemed to be related to a sex-specific stress response and may reveal genetic factors of CS-resilience in female mice.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.