Yashavanth Shaan Lakshmanappa , Pengcheng Shang , Sankar Renu , Santosh Dhakal , Bradley Hogshead , Yihong Xiao , Tao Wang , Ying Fang , Gourapura J. Renukaradhya
{"title":"Concurrent but consecutive vaccination of modified live PRRSV-1 and PRRSV-2 provides better protection in nursery pigs","authors":"Yashavanth Shaan Lakshmanappa , Pengcheng Shang , Sankar Renu , Santosh Dhakal , Bradley Hogshead , Yihong Xiao , Tao Wang , Ying Fang , Gourapura J. Renukaradhya","doi":"10.1016/j.vetmic.2025.110391","DOIUrl":null,"url":null,"abstract":"<div><div>Porcine reproductive and respiratory syndrome (PRRS) virus is a severe threat to the global swine industry. Modified live virus vaccines (MLVs) for two PRRSV species (PRRSV-1 and PRRSV-2) are the most widely used approach to control PRRSV-caused diseases. For swine herds influenced by PRRSV-1 and PRRSV-2, how to rationalize MLV immunization strategies for robust and cross-protective immune responses has been a long-lasting need. In this study, we found that the replication of PRRSV-1 is strongly suppressed by co-infection with PRRSV-2 <em>in vitro</em>, especially under concurrent co-infection conditions. We compared the adaptive immune responses between consecutive and concurrent vaccination methods in nursery pigs, vaccinated either 3 days apart (PRRSV-1 MLV followed by PRRSV-2 MLV, consecutive) or together on the same day (concurrent). PRRSV-1 RNAs were mainly detectable in the sera of consecutively vaccinated pigs. In contrast, PRRSV-2 RNAs in sera were not changed in both vaccination strategies. After the homologous PRRSV-1 or PRRSV-2 challenge, we found that consecutive vaccination slightly improved PRRSV-1 viremia clearance and did not attenuate the PRRSV-2 viremia clearance. Both vaccination strategies induced comparable T-helper cell responses against PRRSV-1 and PRRSV-2 in peripheral blood before and after the challenge. Interestingly, consecutive vaccination induced significantly higher PRRSV-1-specific post-challenge T-helper and cytotoxic T cells responses in the tracheobronchial lymph nodes than concurrent vaccination. Furthermore, consecutive vaccination significantly improved neutralizing antibody responses against PRRSV-1 and PRRSV-2 in comparison with concurrent vaccination. In conclusion, consecutive vaccination appears to be better for viral clearance and induction of adaptive immune response, and our study provides a preliminary rationale to optimize PRRS MLV immunization strategy for better dual protection.</div></div>","PeriodicalId":23551,"journal":{"name":"Veterinary microbiology","volume":"302 ","pages":"Article 110391"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378113525000264","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Porcine reproductive and respiratory syndrome (PRRS) virus is a severe threat to the global swine industry. Modified live virus vaccines (MLVs) for two PRRSV species (PRRSV-1 and PRRSV-2) are the most widely used approach to control PRRSV-caused diseases. For swine herds influenced by PRRSV-1 and PRRSV-2, how to rationalize MLV immunization strategies for robust and cross-protective immune responses has been a long-lasting need. In this study, we found that the replication of PRRSV-1 is strongly suppressed by co-infection with PRRSV-2 in vitro, especially under concurrent co-infection conditions. We compared the adaptive immune responses between consecutive and concurrent vaccination methods in nursery pigs, vaccinated either 3 days apart (PRRSV-1 MLV followed by PRRSV-2 MLV, consecutive) or together on the same day (concurrent). PRRSV-1 RNAs were mainly detectable in the sera of consecutively vaccinated pigs. In contrast, PRRSV-2 RNAs in sera were not changed in both vaccination strategies. After the homologous PRRSV-1 or PRRSV-2 challenge, we found that consecutive vaccination slightly improved PRRSV-1 viremia clearance and did not attenuate the PRRSV-2 viremia clearance. Both vaccination strategies induced comparable T-helper cell responses against PRRSV-1 and PRRSV-2 in peripheral blood before and after the challenge. Interestingly, consecutive vaccination induced significantly higher PRRSV-1-specific post-challenge T-helper and cytotoxic T cells responses in the tracheobronchial lymph nodes than concurrent vaccination. Furthermore, consecutive vaccination significantly improved neutralizing antibody responses against PRRSV-1 and PRRSV-2 in comparison with concurrent vaccination. In conclusion, consecutive vaccination appears to be better for viral clearance and induction of adaptive immune response, and our study provides a preliminary rationale to optimize PRRS MLV immunization strategy for better dual protection.
期刊介绍:
Veterinary Microbiology is concerned with microbial (bacterial, fungal, viral) diseases of domesticated vertebrate animals (livestock, companion animals, fur-bearing animals, game, poultry, fish) that supply food, other useful products or companionship. In addition, Microbial diseases of wild animals living in captivity, or as members of the feral fauna will also be considered if the infections are of interest because of their interrelation with humans (zoonoses) and/or domestic animals. Studies of antimicrobial resistance are also included, provided that the results represent a substantial advance in knowledge. Authors are strongly encouraged to read - prior to submission - the Editorials (''Scope or cope'' and ''Scope or cope II'') published previously in the journal. The Editors reserve the right to suggest submission to another journal for those papers which they feel would be more appropriate for consideration by that journal.
Original research papers of high quality and novelty on aspects of control, host response, molecular biology, pathogenesis, prevention, and treatment of microbial diseases of animals are published. Papers dealing primarily with immunology, epidemiology, molecular biology and antiviral or microbial agents will only be considered if they demonstrate a clear impact on a disease. Papers focusing solely on diagnostic techniques (such as another PCR protocol or ELISA) will not be published - focus should be on a microorganism and not on a particular technique. Papers only reporting microbial sequences, transcriptomics data, or proteomics data will not be considered unless the results represent a substantial advance in knowledge.
Drug trial papers will be considered if they have general application or significance. Papers on the identification of microorganisms will also be considered, but detailed taxonomic studies do not fall within the scope of the journal. Case reports will not be published, unless they have general application or contain novel aspects. Papers of geographically limited interest, which repeat what had been established elsewhere will not be considered. The readership of the journal is global.