{"title":"Differential responses of Bradyrhizobium sp. SUTN9-2 to plant extracts and implications for endophytic interactions within different host plants.","authors":"Teerana Greetatorn, Pakpoom Boonchuen, Pongdet Piromyou, Pongpan Songwattana, Jenjira Wongdee, Kamonluck Teamtisong, Nantakorn Boonkerd, Shusei Sato, Neung Teaumroong, Panlada Tittabutr","doi":"10.1038/s41598-025-87488-5","DOIUrl":null,"url":null,"abstract":"<p><p>Bradyrhizobium sp. strain SUTN9-2 demonstrates cell enlargement, increased DNA content, and efficient nitrogen fixation in response to rice (Oryza sativa) extract. This response is attributed to the interaction between the plant's cationic antimicrobial peptides (CAMPs) and the Bradyrhizobium BacA-like transporter (BclA), similar to bacteroid in legume nodules. The present study reveals that SUTN9-2 can also establish functional endophytic interactions with chili (Capsicum annuum) and tomato (Solanum lycopersicum) plants. When exposed to extracts from chili and tomato, SUTN9-2 exhibits cell elongation, polyploidy, and reduced cell viability, with the effects being less pronounced for tomato extract. Transcriptomic and cytological analyses revealed that genes associated with CAMP resistance, nitrogen metabolism, nitrogen fixation, defense responses, and secretion systems were upregulated, while genes related to the cell cycle and certain CAMP-resistance mechanisms were downregulated, particularly in response to chili extract. This study suggests that SUTN9-2 likely evolves resistance mechanisms against CAMPs found in rice, chili, and tomato plants through mechanisms involving the protease-chaperone DegP, AcrAB-TolC multidrug efflux pumps, and polysaccharides. These mechanisms facilitate efflux, degradation, and the formation of protective barriers to resist CAMPs. Such adaptations enable SUTN9-2 to persist and colonize host plants despite antimicrobial pressures, influencing its viability, cell differentiation, and nitrogen fixation during endophytic interactions with various plant hosts.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3154"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-87488-5","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Bradyrhizobium sp. strain SUTN9-2 demonstrates cell enlargement, increased DNA content, and efficient nitrogen fixation in response to rice (Oryza sativa) extract. This response is attributed to the interaction between the plant's cationic antimicrobial peptides (CAMPs) and the Bradyrhizobium BacA-like transporter (BclA), similar to bacteroid in legume nodules. The present study reveals that SUTN9-2 can also establish functional endophytic interactions with chili (Capsicum annuum) and tomato (Solanum lycopersicum) plants. When exposed to extracts from chili and tomato, SUTN9-2 exhibits cell elongation, polyploidy, and reduced cell viability, with the effects being less pronounced for tomato extract. Transcriptomic and cytological analyses revealed that genes associated with CAMP resistance, nitrogen metabolism, nitrogen fixation, defense responses, and secretion systems were upregulated, while genes related to the cell cycle and certain CAMP-resistance mechanisms were downregulated, particularly in response to chili extract. This study suggests that SUTN9-2 likely evolves resistance mechanisms against CAMPs found in rice, chili, and tomato plants through mechanisms involving the protease-chaperone DegP, AcrAB-TolC multidrug efflux pumps, and polysaccharides. These mechanisms facilitate efflux, degradation, and the formation of protective barriers to resist CAMPs. Such adaptations enable SUTN9-2 to persist and colonize host plants despite antimicrobial pressures, influencing its viability, cell differentiation, and nitrogen fixation during endophytic interactions with various plant hosts.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.