An automatic cervical cell classification model based on improved DenseNet121.

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yue Zhang, Chunyu Ning, Wenjing Yang
{"title":"An automatic cervical cell classification model based on improved DenseNet121.","authors":"Yue Zhang, Chunyu Ning, Wenjing Yang","doi":"10.1038/s41598-025-87953-1","DOIUrl":null,"url":null,"abstract":"<p><p>The cervical cell classification technique can determine the degree of cellular abnormality and pathological condition, which can help doctors to detect the risk of cervical cancer at an early stage and improve the cure and survival rates of cervical cancer patients. Addressing the issue of low accuracy in cervical cell classification, a deep convolutional neural network A2SDNet121 is proposed. A2SDNet121 takes DenseNet121 as the backbone network. Firstly, the SE module is embedded in DenseNet121 to increase the model's focus on the nucleus region, which contains important diagnostic information, and reduce the focus on redundant information. Secondly, the sizes of the convolutional kernel and pooling window of the Stem layer are adjusted to adapt to the characteristics of the cervical cell images, so that the model can extract the local detailed information more effectively. Finally, the Atrous Dense Block (ADB) is constructed, and four ADB modules are integrated into DenseNet121 to enable the model to acquire global and local salient feature information. The accuracy of A2SDNet121 for two and seven-classification tasks on the Herlev dataset is 99.75% and 99.14%, respectively. The accuracy for two, three, and five-classification tasks on the SIPaKMeD dataset reaches 99.55%, 99.75% and 99.22%, respectively. Compared with other state-of-the-art algorithms, the A2SDNet121 model performs better in the multi-classification task of cervical cells, which can significantly improve the accuracy and efficiency of cervical cancer screening.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3240"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762993/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-87953-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The cervical cell classification technique can determine the degree of cellular abnormality and pathological condition, which can help doctors to detect the risk of cervical cancer at an early stage and improve the cure and survival rates of cervical cancer patients. Addressing the issue of low accuracy in cervical cell classification, a deep convolutional neural network A2SDNet121 is proposed. A2SDNet121 takes DenseNet121 as the backbone network. Firstly, the SE module is embedded in DenseNet121 to increase the model's focus on the nucleus region, which contains important diagnostic information, and reduce the focus on redundant information. Secondly, the sizes of the convolutional kernel and pooling window of the Stem layer are adjusted to adapt to the characteristics of the cervical cell images, so that the model can extract the local detailed information more effectively. Finally, the Atrous Dense Block (ADB) is constructed, and four ADB modules are integrated into DenseNet121 to enable the model to acquire global and local salient feature information. The accuracy of A2SDNet121 for two and seven-classification tasks on the Herlev dataset is 99.75% and 99.14%, respectively. The accuracy for two, three, and five-classification tasks on the SIPaKMeD dataset reaches 99.55%, 99.75% and 99.22%, respectively. Compared with other state-of-the-art algorithms, the A2SDNet121 model performs better in the multi-classification task of cervical cells, which can significantly improve the accuracy and efficiency of cervical cancer screening.

Abstract Image

Abstract Image

Abstract Image

基于改进DenseNet121的宫颈细胞自动分类模型。
宫颈细胞分类技术可以确定细胞的异常程度和病理状况,可以帮助医生早期发现宫颈癌的危险,提高宫颈癌患者的治愈率和生存率。针对宫颈细胞分类准确率低的问题,提出了一种深度卷积神经网络A2SDNet121。A2SDNet121以DenseNet121为骨干网。首先,将SE模块嵌入到DenseNet121中,增加模型对包含重要诊断信息的核区域的关注,减少对冗余信息的关注。其次,调整Stem层卷积核和池化窗口的大小,以适应宫颈细胞图像的特征,使模型能够更有效地提取局部细节信息;最后,构建了Atrous Dense Block (ADB),并将四个ADB模块集成到DenseNet121中,使模型能够获取全局和局部显著特征信息。在Herlev数据集上,A2SDNet121对2类和7类分类任务的准确率分别为99.75%和99.14%。在SIPaKMeD数据集上,二分类、三分类和五分类任务的准确率分别达到99.55%、99.75%和99.22%。与其他最先进的算法相比,A2SDNet121模型在宫颈细胞的多重分类任务中表现更好,可以显著提高宫颈癌筛查的准确性和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信