Peripheral blood miRNAs are associated with airflow below threshold in children with asthma.

IF 5.8 2区 医学 Q1 Medicine
Anshul Tiwari, Brian D Hobbs, Rinku Sharma, Jiang Li, Alvin T Kho, Sami Amr, Juan C Celedón, Scott T Weiss, Craig P Hersh, Kelan G Tantisira, Michael J McGeachie
{"title":"Peripheral blood miRNAs are associated with airflow below threshold in children with asthma.","authors":"Anshul Tiwari, Brian D Hobbs, Rinku Sharma, Jiang Li, Alvin T Kho, Sami Amr, Juan C Celedón, Scott T Weiss, Craig P Hersh, Kelan G Tantisira, Michael J McGeachie","doi":"10.1186/s12931-025-03116-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>MicroRNAs (miRNAs) are crucial post-transcriptional regulators involved in inflammatory diseases, such as asthma. Poor lung function and airflow issues in childhood are linked to the development of chronic obstructive pulmonary disease (COPD) in adulthood.</p><p><strong>Methods: </strong>We analyzed small RNA-Seq data from 365 peripheral whole blood samples from the Genetics of Asthma in Costa Rica Study (GACRS) for association with airflow levels measured by FEV1/FVC. Differentially expressed (DE) miRNAs were identified using DESeq2 in R, adjusting for covariates and applying a 10% false discovery rate (FDR). The analysis included 361 samples and 649 miRNAs. The two DE miRNAs were further tested for association with airflow obstruction in a study of adult former smokers with and without COPD.</p><p><strong>Results: </strong>We found 1 upregulated and 1 downregulated miRNA in participants with airflow below the threshold compared to those above it. In the adult study, the same miRNAs were upregulated and downregulated in individuals with FEV1/FVC < 0.7 versus those with FEV1/FVC > 0.7, showing suggestive statistical evidence. The target genes of these miRNAs were enriched for PI3K-Akt, Hippo, WNT, MAPK, and focal adhesion pathways.</p><p><strong>Conclusions: </strong>Two differentially expressed miRNAs were associated with airflow levels in children with asthma and airflow obstruction in adults with COPD. This suggests that shared genetic regulatory systems may influence childhood airflow and contribute to adulthood airflow obstruction.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":"26 1","pages":"38"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763123/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-025-03116-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: MicroRNAs (miRNAs) are crucial post-transcriptional regulators involved in inflammatory diseases, such as asthma. Poor lung function and airflow issues in childhood are linked to the development of chronic obstructive pulmonary disease (COPD) in adulthood.

Methods: We analyzed small RNA-Seq data from 365 peripheral whole blood samples from the Genetics of Asthma in Costa Rica Study (GACRS) for association with airflow levels measured by FEV1/FVC. Differentially expressed (DE) miRNAs were identified using DESeq2 in R, adjusting for covariates and applying a 10% false discovery rate (FDR). The analysis included 361 samples and 649 miRNAs. The two DE miRNAs were further tested for association with airflow obstruction in a study of adult former smokers with and without COPD.

Results: We found 1 upregulated and 1 downregulated miRNA in participants with airflow below the threshold compared to those above it. In the adult study, the same miRNAs were upregulated and downregulated in individuals with FEV1/FVC < 0.7 versus those with FEV1/FVC > 0.7, showing suggestive statistical evidence. The target genes of these miRNAs were enriched for PI3K-Akt, Hippo, WNT, MAPK, and focal adhesion pathways.

Conclusions: Two differentially expressed miRNAs were associated with airflow levels in children with asthma and airflow obstruction in adults with COPD. This suggests that shared genetic regulatory systems may influence childhood airflow and contribute to adulthood airflow obstruction.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Respiratory Research
Respiratory Research RESPIRATORY SYSTEM-
CiteScore
9.70
自引率
1.70%
发文量
314
审稿时长
4-8 weeks
期刊介绍: Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases. As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion. Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信