{"title":"[Establishment and application of a genetic operating system in <i>Wickerhamomyces ciferrii</i> for the synthesis of tetraacetyl phytosphingosine].","authors":"Liu Liu, Zheng'an Yin, Li Pan","doi":"10.13345/j.cjb.240385","DOIUrl":null,"url":null,"abstract":"<p><p><i>Wickerhamomyces ciferrii</i> (<i>W</i>.<i>c</i>), an unconventional heterothallic yeast species, is renowned for its high production of tetraacetyl phytosphingosine (TAPS). Due to its excellent performance in TAPS production, this study aimed to construct a genetic operating system of <i>W</i>.<i>c</i> to enhance the production of TAPS and to screen high-yielding strains by mutagenesis and genetic engineering, thus laying the foundation for further development of industrial production of sphingolipid metabolites. In this study, we selected two autonomous replication elements (CEN, 2μ) and mined 11 endogenous promoter elements to establish a genetic operating system in <i>W</i>. <i>ciferrii</i>. The overexpression of <i>Syr2</i> and <i>Lcb2</i> in the sphingolipid metabolism pathway significantly increased the production of TAPS. Meanwhile, we established a method for the identification of haploid mating types of <i>W</i>. <i>ciferrii</i> by combining RT-PCR and flow cytometry. Five strains of <i>W</i>. <i>ciferrii</i> with different mating types constructed from the standard diploid <i>W</i>. <i>ciferrii</i> ATCC 14091 were screened out. A-type haploid <i>W</i>.<i>c</i> 140 showcased the highest production of TAPS with a yield of 4.74 mg/g and a titer of 32.61 mg/L. Mutant strains <i>W</i>.<i>c</i> 140-A9 and <i>W</i>.<i>c</i> 140-A11 were induced by atmospheric pressure room temperature plasma mutagenesis. The recombinant strains <i>W</i>.<i>c</i> 140 OE<i>Lcb2</i> and <i>W</i>.<i>c</i> 140 OE<i>Syr2</i> with overexpression were constructed with the genetic operating system established in this study. The TAPS yields of the mutant strains increased by 61.39% and 67.09%, respectively, compared with that of starting strain <i>W</i>.<i>c</i> 140. The recombinant strains cultured in the LCBNB medium achieved yields of 10.60 mg/g and 12.14 mg/g, respectively, representing 2.24 and 2.56 times of that in strain <i>W</i>.<i>c</i> 140. Moreover, the yields of the two recombinant strains were significantly higher than that of the diploid strain ATCC 14091. The genetic operating system and the haploid strain <i>W</i>.<i>c</i> 140 established in this study provide a basis for the subsequent establishment of genetic engineering tools for <i>W</i>. <i>ciferrii</i>.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 1","pages":"397-415"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240385","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Wickerhamomyces ciferrii (W.c), an unconventional heterothallic yeast species, is renowned for its high production of tetraacetyl phytosphingosine (TAPS). Due to its excellent performance in TAPS production, this study aimed to construct a genetic operating system of W.c to enhance the production of TAPS and to screen high-yielding strains by mutagenesis and genetic engineering, thus laying the foundation for further development of industrial production of sphingolipid metabolites. In this study, we selected two autonomous replication elements (CEN, 2μ) and mined 11 endogenous promoter elements to establish a genetic operating system in W. ciferrii. The overexpression of Syr2 and Lcb2 in the sphingolipid metabolism pathway significantly increased the production of TAPS. Meanwhile, we established a method for the identification of haploid mating types of W. ciferrii by combining RT-PCR and flow cytometry. Five strains of W. ciferrii with different mating types constructed from the standard diploid W. ciferrii ATCC 14091 were screened out. A-type haploid W.c 140 showcased the highest production of TAPS with a yield of 4.74 mg/g and a titer of 32.61 mg/L. Mutant strains W.c 140-A9 and W.c 140-A11 were induced by atmospheric pressure room temperature plasma mutagenesis. The recombinant strains W.c 140 OELcb2 and W.c 140 OESyr2 with overexpression were constructed with the genetic operating system established in this study. The TAPS yields of the mutant strains increased by 61.39% and 67.09%, respectively, compared with that of starting strain W.c 140. The recombinant strains cultured in the LCBNB medium achieved yields of 10.60 mg/g and 12.14 mg/g, respectively, representing 2.24 and 2.56 times of that in strain W.c 140. Moreover, the yields of the two recombinant strains were significantly higher than that of the diploid strain ATCC 14091. The genetic operating system and the haploid strain W.c 140 established in this study provide a basis for the subsequent establishment of genetic engineering tools for W. ciferrii.
期刊介绍:
Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.