Isabelle Linares, Kaihua Chen, Ava Saffren, Mehran Mansouri, Vinay V Abhyankar, Benjamin L Miller, Stefano Begolo, Hani A Awad, James L McGrath
{"title":"Fluid flow impacts endothelial-monocyte interactions in a model of vascular inflammatory fibrosis.","authors":"Isabelle Linares, Kaihua Chen, Ava Saffren, Mehran Mansouri, Vinay V Abhyankar, Benjamin L Miller, Stefano Begolo, Hani A Awad, James L McGrath","doi":"10.1038/s41598-025-85987-z","DOIUrl":null,"url":null,"abstract":"<p><p>The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment. Here, we leveraged the modularity of our platform to create a fluidic hToC that enables the study of circulating immune cell and vascular crosstalk in a tendon injury model. Under physiological shear stress consistent with postcapillary venules, we found a significant increase in the endothelial leukocyte activation marker intercellular adhesion molecule 1 (ICAM-1), as well as enhanced adhesion and transmigration of circulating monocytes across the endothelial barrier. The addition of tissue macrophages to the tendon compartment further increased the degree of circulating monocyte infiltration into the tissue matrix. Our findings demonstrate the importance of adding physiological flow to the human tendon-on-a-chip, and more generally, the significance of flow for modeling immune cell interactions in tissue inflammation and disease.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3227"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763004/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-85987-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment. Here, we leveraged the modularity of our platform to create a fluidic hToC that enables the study of circulating immune cell and vascular crosstalk in a tendon injury model. Under physiological shear stress consistent with postcapillary venules, we found a significant increase in the endothelial leukocyte activation marker intercellular adhesion molecule 1 (ICAM-1), as well as enhanced adhesion and transmigration of circulating monocytes across the endothelial barrier. The addition of tissue macrophages to the tendon compartment further increased the degree of circulating monocyte infiltration into the tissue matrix. Our findings demonstrate the importance of adding physiological flow to the human tendon-on-a-chip, and more generally, the significance of flow for modeling immune cell interactions in tissue inflammation and disease.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.