Zero-Shot Traffic Identification with Attribute and Graph-Based Representations for Edge Computing.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-01-18 DOI:10.3390/s25020545
Zikui Lu, Zixi Chang, Mingshu He, Luona Song
{"title":"Zero-Shot Traffic Identification with Attribute and Graph-Based Representations for Edge Computing.","authors":"Zikui Lu, Zixi Chang, Mingshu He, Luona Song","doi":"10.3390/s25020545","DOIUrl":null,"url":null,"abstract":"<p><p>With the proliferation of mobile terminals and the rapid growth of network applications, fine-grained traffic identification has become increasingly challenging. Methods based on machine learning and deep learning have achieved remarkable results, but they heavily rely on the distribution of training data, which makes them ineffective in handling unseen samples. In this paper, we propose AG-ZSL, a zero-shot learning framework based on traffic behavior and attribute representations for general encrypted traffic classification. AG-ZSL primarily learns two mapping functions: one that captures traffic behavior embeddings from burst-based traffic interaction graphs, and the other that learns attribute embeddings from traffic attribute descriptions. Then, the framework minimizes the distance between these embeddings within the shared feature space. The gradient rejection algorithm and K-Nearest Neighbors are introduced to implement a two-stage method for general traffic classification. Experimental results on IoT datasets demonstrate that AG-ZSL achieves exceptional performance in classifying both known and unknown traffic, highlighting its potential for enhancing secure and efficient traffic management at the network edge.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768823/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020545","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

With the proliferation of mobile terminals and the rapid growth of network applications, fine-grained traffic identification has become increasingly challenging. Methods based on machine learning and deep learning have achieved remarkable results, but they heavily rely on the distribution of training data, which makes them ineffective in handling unseen samples. In this paper, we propose AG-ZSL, a zero-shot learning framework based on traffic behavior and attribute representations for general encrypted traffic classification. AG-ZSL primarily learns two mapping functions: one that captures traffic behavior embeddings from burst-based traffic interaction graphs, and the other that learns attribute embeddings from traffic attribute descriptions. Then, the framework minimizes the distance between these embeddings within the shared feature space. The gradient rejection algorithm and K-Nearest Neighbors are introduced to implement a two-stage method for general traffic classification. Experimental results on IoT datasets demonstrate that AG-ZSL achieves exceptional performance in classifying both known and unknown traffic, highlighting its potential for enhancing secure and efficient traffic management at the network edge.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信