Virtual Node-Driven Cloud-Edge Collaborative Resource Scheduling for Surveillance with Visual Sensors.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-01-17 DOI:10.3390/s25020535
Xinyang Gu, Zhansheng Duan, Guangyuan Ye, Zhenjun Chang
{"title":"Virtual Node-Driven Cloud-Edge Collaborative Resource Scheduling for Surveillance with Visual Sensors.","authors":"Xinyang Gu, Zhansheng Duan, Guangyuan Ye, Zhenjun Chang","doi":"10.3390/s25020535","DOIUrl":null,"url":null,"abstract":"<p><p>For public security purposes, distributed surveillance systems are widely deployed in key areas. These systems comprise visual sensors, edge computing boxes, and cloud servers. Resource scheduling algorithms are critical to ensure such systems' robustness and efficiency. They balance workloads and need to meet real-time monitoring and emergency response requirements. Existing works have primarily focused on optimizing Quality of Service (QoS), latency, and energy consumption in edge computing under resource constraints. However, the issue of task congestion due to insufficient physical resources has been rarely investigated. In this paper, we tackle the challenges posed by large workloads and limited resources in the context of surveillance with visual sensors. First, we introduce the concept of virtual nodes for managing resource shortages, referred to as virtual node-driven resource scheduling. Then, we propose a convex-objective integer linear programming (ILP) model based on this concept and demonstrate its efficiency. Additionally, we propose three alternative virtual node-driven scheduling algorithms, the extension of a random algorithm, a genetic algorithm, and a heuristic algorithm, respectively. These algorithms serve as benchmarks for comparison with the proposed ILP model. Experimental results show that all the scheduling algorithms can effectively address the challenge of offloading multiple priority tasks under resource constraints. Furthermore, the ILP model shows the best scheduling performance among them.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768989/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020535","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

For public security purposes, distributed surveillance systems are widely deployed in key areas. These systems comprise visual sensors, edge computing boxes, and cloud servers. Resource scheduling algorithms are critical to ensure such systems' robustness and efficiency. They balance workloads and need to meet real-time monitoring and emergency response requirements. Existing works have primarily focused on optimizing Quality of Service (QoS), latency, and energy consumption in edge computing under resource constraints. However, the issue of task congestion due to insufficient physical resources has been rarely investigated. In this paper, we tackle the challenges posed by large workloads and limited resources in the context of surveillance with visual sensors. First, we introduce the concept of virtual nodes for managing resource shortages, referred to as virtual node-driven resource scheduling. Then, we propose a convex-objective integer linear programming (ILP) model based on this concept and demonstrate its efficiency. Additionally, we propose three alternative virtual node-driven scheduling algorithms, the extension of a random algorithm, a genetic algorithm, and a heuristic algorithm, respectively. These algorithms serve as benchmarks for comparison with the proposed ILP model. Experimental results show that all the scheduling algorithms can effectively address the challenge of offloading multiple priority tasks under resource constraints. Furthermore, the ILP model shows the best scheduling performance among them.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信