Towards the Measurement of Sea-Ice Thickness Using a Time-Domain Inductive Measurement System.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-01-16 DOI:10.3390/s25020510
Danny Hills, Becan Lawless, Rauan Khangerey, Jeremy Wilkinson, Liam A Marsh
{"title":"Towards the Measurement of Sea-Ice Thickness Using a Time-Domain Inductive Measurement System.","authors":"Danny Hills, Becan Lawless, Rauan Khangerey, Jeremy Wilkinson, Liam A Marsh","doi":"10.3390/s25020510","DOIUrl":null,"url":null,"abstract":"<p><p>Frequency-domain electromagnetic induction (EMI) is routinely used to detect the presence of seawater due to the inherent electrical conductivity of the seawater. This approach is used to infer sea-ice thickness (SIT). A time-domain EMI sensor is presented, which demonstrates the potential for correlating the spectroscopic properties of the received signal with the distance to the sea surface. This is a novel approach to SIT measurement, which differs from existing methods in that it uses measurements from 10 kHz to 93 kHz rather than a single frequency. The sensor was tested at a tidal pool containing seawater and measured to have a conductivity of 57.3 mS/cm. Measurements were performed at a range of heights between 0.2 m and 1.9 m above the sea surface and for inclinations from 0° to 45°. These measurements were correlated with Finite Element Modeling (FEM) simulations performed in COMSOL. The measured and simulated datasets are presented along with a proposed form of post-processing, which establishes a correlation between the distance to the sea surface and the measured EMI response. This forms a proxy measurement for the absolute distance from the EMI sensor to the sea surface. Because the air gap between the sensor and the seawater is indicative of the properties of sea ice, this study demonstrates a novel approach to non-destructive measurement of sea-ice thickness. The measurements show that this distance to the sea surface can be estimated to within approximately 10% of the known value from 0.2-1.5 m and 15% from 1.5 to 1.9 m.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769315/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020510","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Frequency-domain electromagnetic induction (EMI) is routinely used to detect the presence of seawater due to the inherent electrical conductivity of the seawater. This approach is used to infer sea-ice thickness (SIT). A time-domain EMI sensor is presented, which demonstrates the potential for correlating the spectroscopic properties of the received signal with the distance to the sea surface. This is a novel approach to SIT measurement, which differs from existing methods in that it uses measurements from 10 kHz to 93 kHz rather than a single frequency. The sensor was tested at a tidal pool containing seawater and measured to have a conductivity of 57.3 mS/cm. Measurements were performed at a range of heights between 0.2 m and 1.9 m above the sea surface and for inclinations from 0° to 45°. These measurements were correlated with Finite Element Modeling (FEM) simulations performed in COMSOL. The measured and simulated datasets are presented along with a proposed form of post-processing, which establishes a correlation between the distance to the sea surface and the measured EMI response. This forms a proxy measurement for the absolute distance from the EMI sensor to the sea surface. Because the air gap between the sensor and the seawater is indicative of the properties of sea ice, this study demonstrates a novel approach to non-destructive measurement of sea-ice thickness. The measurements show that this distance to the sea surface can be estimated to within approximately 10% of the known value from 0.2-1.5 m and 15% from 1.5 to 1.9 m.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信