Minimizing Delay and Power Consumption at the Edge.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-01-16 DOI:10.3390/s25020502
Erol Gelenbe
{"title":"Minimizing Delay and Power Consumption at the Edge.","authors":"Erol Gelenbe","doi":"10.3390/s25020502","DOIUrl":null,"url":null,"abstract":"<p><p>Edge computing systems must offer low latency at low cost and low power consumption for sensors and other applications, including the IoT, smart vehicles, smart homes, and 6G. Thus, substantial research has been conducted to identify optimum task allocation schemes in this context using non-linear optimization, machine learning, and market-based algorithms. Prior work has mainly focused on two methodologies: (i) formulating non-linear optimizations that lead to NP-hard problems, which are processed via heuristics, and (ii) using AI-based formulations, such as reinforcement learning, that are then tested with simulations. These prior approaches have two shortcomings: (a) there is no guarantee that optimum solutions are achieved, and (b) they do not provide an explicit formula for the fraction of tasks that are allocated to the different servers to achieve a specified optimum. This paper offers a radically different and mathematically based principled method that explicitly computes the optimum fraction of jobs that should be allocated to the different servers to (1) minimize the average latency (delay) of the jobs that are allocated to the edge servers and (2) minimize the average energy consumption of these jobs at the set of edge servers. These results are obtained with a mathematical model of a multiple-server edge system that is managed by a task distribution platform, whose equations are derived and solved using methods from stochastic processes. This approach has low computational cost and provides simple linear complexity formulas to compute the fraction of tasks that should be assigned to the different servers to achieve minimum latency and minimum energy consumption.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768709/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020502","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Edge computing systems must offer low latency at low cost and low power consumption for sensors and other applications, including the IoT, smart vehicles, smart homes, and 6G. Thus, substantial research has been conducted to identify optimum task allocation schemes in this context using non-linear optimization, machine learning, and market-based algorithms. Prior work has mainly focused on two methodologies: (i) formulating non-linear optimizations that lead to NP-hard problems, which are processed via heuristics, and (ii) using AI-based formulations, such as reinforcement learning, that are then tested with simulations. These prior approaches have two shortcomings: (a) there is no guarantee that optimum solutions are achieved, and (b) they do not provide an explicit formula for the fraction of tasks that are allocated to the different servers to achieve a specified optimum. This paper offers a radically different and mathematically based principled method that explicitly computes the optimum fraction of jobs that should be allocated to the different servers to (1) minimize the average latency (delay) of the jobs that are allocated to the edge servers and (2) minimize the average energy consumption of these jobs at the set of edge servers. These results are obtained with a mathematical model of a multiple-server edge system that is managed by a task distribution platform, whose equations are derived and solved using methods from stochastic processes. This approach has low computational cost and provides simple linear complexity formulas to compute the fraction of tasks that should be assigned to the different servers to achieve minimum latency and minimum energy consumption.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信