Tiny Machine Learning Implementation for Guided Wave-Based Damage Localization.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-01-20 DOI:10.3390/s25020578
Jannik Henkmann, Vittorio Memmolo, Jochen Moll
{"title":"Tiny Machine Learning Implementation for Guided Wave-Based Damage Localization.","authors":"Jannik Henkmann, Vittorio Memmolo, Jochen Moll","doi":"10.3390/s25020578","DOIUrl":null,"url":null,"abstract":"<p><p>This work leverages ultrasonic guided waves (UGWs) to detect and localize damage in structures using lightweight Artificial Intelligence (AI) models. It investigates the use of machine learning (ML) to train the effects of the damage on UGWs to the model. To reduce the number of trainable parameters, a physical signal processing approach is applied to the raw data before passing the data to the model. Starting from current state of the art in algorithms used for damage detection and localization, an AI-based technique is developed and validated on an experimental benchmark dataset before tiny ML implementation on a low-cost development board. A discussion of the need for a balance between the reduction in computational resources and increasing the precision of the models is also reported. It is shown that by extracting simple features of the signal, the models required to predict the damage locations can be significantly reduced in size while still having high accuracies of over 90%. In addition, it is possible to use these predictions to construct a fairly accurate heat map indicating the likely damage locations. Finally, a convenient edge/cloud visualization of the results can be achieved by simplifying the heat map.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768980/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020578","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This work leverages ultrasonic guided waves (UGWs) to detect and localize damage in structures using lightweight Artificial Intelligence (AI) models. It investigates the use of machine learning (ML) to train the effects of the damage on UGWs to the model. To reduce the number of trainable parameters, a physical signal processing approach is applied to the raw data before passing the data to the model. Starting from current state of the art in algorithms used for damage detection and localization, an AI-based technique is developed and validated on an experimental benchmark dataset before tiny ML implementation on a low-cost development board. A discussion of the need for a balance between the reduction in computational resources and increasing the precision of the models is also reported. It is shown that by extracting simple features of the signal, the models required to predict the damage locations can be significantly reduced in size while still having high accuracies of over 90%. In addition, it is possible to use these predictions to construct a fairly accurate heat map indicating the likely damage locations. Finally, a convenient edge/cloud visualization of the results can be achieved by simplifying the heat map.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信