Remaining Useful Life Prediction of Rolling Bearings Based on CBAM-CNN-LSTM.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-01-19 DOI:10.3390/s25020554
Bo Sun, Wenting Hu, Hao Wang, Lei Wang, Chengyang Deng
{"title":"Remaining Useful Life Prediction of Rolling Bearings Based on CBAM-CNN-LSTM.","authors":"Bo Sun, Wenting Hu, Hao Wang, Lei Wang, Chengyang Deng","doi":"10.3390/s25020554","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting the Remaining Useful Life (RUL) is vital for ensuring the reliability and safety of equipment and components. This study introduces a novel method for predicting RUL that utilizes the Convolutional Block Attention Module (CBAM) to address the problem that Convolutional Neural Networks (CNNs) do not effectively leverage data channel features and spatial features in residual life prediction. Firstly, Fast Fourier Transform (FFT) is applied to convert the data into the frequency domain. The resulting frequency domain data is then used as input to the convolutional neural network for feature extraction; Then, the weights of channel features and spatial features are assigned to the extracted features by CBAM, and the weighted features are then input into the Long Short-Term Memory (LSTM) network to learn temporal features. Finally, the effectiveness of the proposed model is verified using the PHM2012 bearing dataset. Compared to several existing RUL prediction methods, the mean squared error, mean absolute error, and root mean squared error of the proposed method in this paper are reduced by 53%, 16.87%, and 31.68%, respectively, which verifies the superiority of the method. Meanwhile, the experimental results demonstrate that the proposed method achieves good RUL prediction accuracy across various failure modes.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768707/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020554","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Predicting the Remaining Useful Life (RUL) is vital for ensuring the reliability and safety of equipment and components. This study introduces a novel method for predicting RUL that utilizes the Convolutional Block Attention Module (CBAM) to address the problem that Convolutional Neural Networks (CNNs) do not effectively leverage data channel features and spatial features in residual life prediction. Firstly, Fast Fourier Transform (FFT) is applied to convert the data into the frequency domain. The resulting frequency domain data is then used as input to the convolutional neural network for feature extraction; Then, the weights of channel features and spatial features are assigned to the extracted features by CBAM, and the weighted features are then input into the Long Short-Term Memory (LSTM) network to learn temporal features. Finally, the effectiveness of the proposed model is verified using the PHM2012 bearing dataset. Compared to several existing RUL prediction methods, the mean squared error, mean absolute error, and root mean squared error of the proposed method in this paper are reduced by 53%, 16.87%, and 31.68%, respectively, which verifies the superiority of the method. Meanwhile, the experimental results demonstrate that the proposed method achieves good RUL prediction accuracy across various failure modes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信