Geometry-Based Synchrosqueezing S-Transform with Shifted Instantaneous Frequency Estimator Applied to Gearbox Fault Diagnosis.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-01-18 DOI:10.3390/s25020540
Xinping Zhu, Wuxi Shi, Zhongxing Huang, Liqing Shi
{"title":"Geometry-Based Synchrosqueezing S-Transform with Shifted Instantaneous Frequency Estimator Applied to Gearbox Fault Diagnosis.","authors":"Xinping Zhu, Wuxi Shi, Zhongxing Huang, Liqing Shi","doi":"10.3390/s25020540","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a novel geometry-based synchrosqueezing S-transform (GSSST) for advanced gearbox fault diagnosis, designed to enhance diagnostic precision in both planetary and parallel gearboxes. Traditional time-frequency analysis (TFA) methods, such as the Synchrosqueezing S-transform (SSST), often face challenges in accurately representing fault-related features when significant mode closely spaced components are present. The proposed GSSST method overcomes these limitations by implementing an intuitive geometric reassignment framework, which reassigns time-frequency (TF) coefficients to maximize energy concentration, thereby allowing fault components to be distinctly isolated even under challenging conditions. The GSSST algorithm calculates a new instantaneous frequency (IF) estimator that aligns closely with the ideal IF, thus concentrating TF coefficients more effectively than existing methods. Experimental validation, including tests on simulated signals and real-world gearbox fault data, demonstrates that GSSST achieves high robustness and diagnostic accuracy across various types of gearbox faults even in the presence of noise. Moreover, unlike conventional reassignment method, GSSST supports partial signal reconstruction, a key advantage for applications requiring accurate signal recovery. This research highlights GSSST as a promising and versatile tool for diagnosing complex mechanical faults and provides new insights for the future development of TFA methods in mechanical fault analysis.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769415/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020540","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel geometry-based synchrosqueezing S-transform (GSSST) for advanced gearbox fault diagnosis, designed to enhance diagnostic precision in both planetary and parallel gearboxes. Traditional time-frequency analysis (TFA) methods, such as the Synchrosqueezing S-transform (SSST), often face challenges in accurately representing fault-related features when significant mode closely spaced components are present. The proposed GSSST method overcomes these limitations by implementing an intuitive geometric reassignment framework, which reassigns time-frequency (TF) coefficients to maximize energy concentration, thereby allowing fault components to be distinctly isolated even under challenging conditions. The GSSST algorithm calculates a new instantaneous frequency (IF) estimator that aligns closely with the ideal IF, thus concentrating TF coefficients more effectively than existing methods. Experimental validation, including tests on simulated signals and real-world gearbox fault data, demonstrates that GSSST achieves high robustness and diagnostic accuracy across various types of gearbox faults even in the presence of noise. Moreover, unlike conventional reassignment method, GSSST supports partial signal reconstruction, a key advantage for applications requiring accurate signal recovery. This research highlights GSSST as a promising and versatile tool for diagnosing complex mechanical faults and provides new insights for the future development of TFA methods in mechanical fault analysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信