Chih-Ching Chung, Gwo-Ching Gong, Hsiao-Chun Tseng, Wen-Chen Chou, Chuan-Hsin Ho
{"title":"Dominance of Sulfur-Oxidizing Bacteria, <i>Thiomicrorhabdus</i>, in the Waters Affected by a Shallow-Sea Hydrothermal Plume.","authors":"Chih-Ching Chung, Gwo-Ching Gong, Hsiao-Chun Tseng, Wen-Chen Chou, Chuan-Hsin Ho","doi":"10.3390/biology14010028","DOIUrl":null,"url":null,"abstract":"<p><p>The shallow-sea hydrothermal vent at Guishan Islet, located off the coast of Taiwan, serves as a remarkable natural site for studying microbial ecology in extreme environments. In April 2019, we investigated the composition of prokaryotic picoplankton communities, their gene expression profiles, and the dissolved inorganic carbon uptake efficiency. Our results revealed that the chemolithotrophs <i>Thiomicrorhabdus</i> spp. contributed to the majority of primary production in the waters affected by the hydrothermal vent plume. The metatranscriptomic analysis aligned with the primary productivity measurements, indicating the significant gene upregulations associated with carboxysome-mediated carbon fixation in <i>Thiomicrorhabdus</i>. <i>Synechococcus</i> and <i>Prochlorococcus</i> served as the prokaryotic photoautotrophs for primary productivity in the waters with lower influence from hydrothermal vent emissions. <i>Thiomicrorhabdus</i> and picocyanobacteria jointly provided organic carbon for sustaining the shallow-sea hydrothermal vent ecosystem. In addition to the carbon fixation, the upregulation of genes involved in the SOX (sulfur-oxidizing) pathway, and the dissimilatory sulfate reduction indicated that energy generation and detoxification co-occurred in <i>Thiomicrorhabdus</i>. This study improved our understanding of the impacts of shallow-sea hydrothermal vents on the operation of marine ecosystems and biogeochemical cycles.</p>","PeriodicalId":48624,"journal":{"name":"Biology-Basel","volume":"14 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11763282/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology-Basel","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biology14010028","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The shallow-sea hydrothermal vent at Guishan Islet, located off the coast of Taiwan, serves as a remarkable natural site for studying microbial ecology in extreme environments. In April 2019, we investigated the composition of prokaryotic picoplankton communities, their gene expression profiles, and the dissolved inorganic carbon uptake efficiency. Our results revealed that the chemolithotrophs Thiomicrorhabdus spp. contributed to the majority of primary production in the waters affected by the hydrothermal vent plume. The metatranscriptomic analysis aligned with the primary productivity measurements, indicating the significant gene upregulations associated with carboxysome-mediated carbon fixation in Thiomicrorhabdus. Synechococcus and Prochlorococcus served as the prokaryotic photoautotrophs for primary productivity in the waters with lower influence from hydrothermal vent emissions. Thiomicrorhabdus and picocyanobacteria jointly provided organic carbon for sustaining the shallow-sea hydrothermal vent ecosystem. In addition to the carbon fixation, the upregulation of genes involved in the SOX (sulfur-oxidizing) pathway, and the dissimilatory sulfate reduction indicated that energy generation and detoxification co-occurred in Thiomicrorhabdus. This study improved our understanding of the impacts of shallow-sea hydrothermal vents on the operation of marine ecosystems and biogeochemical cycles.
期刊介绍:
Biology (ISSN 2079-7737) is an international, peer-reviewed, quick-refereeing open access journal of Biological Science published by MDPI online. It publishes reviews, research papers and communications in all areas of biology and at the interface of related disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.