{"title":"Optimized inner ear organoids for efficient hair cell generation and ototoxicity response modeling.","authors":"Xuanhe Qin, Liping Fu, Chunying Li, Xilin Tan, Xiaolei Yin","doi":"10.1007/s11427-024-2803-1","DOIUrl":null,"url":null,"abstract":"<p><p>Hair cells in the mammalian cochlea are highly vulnerable to damage from drug toxicity, noise exposure, aging, and genetic mutations, with no capacity for regeneration. Progress in hair cell protection research has been limited by the scarcity of cochlear tissue and suitable in vitro models. Here, we present a novel one-step, self-organizing inner ear organoid system optimized with small molecules, which bypasses the need for multi-step expansion and forced differentiation protocols. This approach efficiently generates hair cells and supporting cells that recapitulate the molecular, cellular, and structural characteristics of the inner ear. Single-cell RNA sequencing revealed the diversity and fidelity of cell populations within the organoids. Utilizing this platform, we validated the protective effects of candidate compounds against hair cell damage, highlighting its potential as a powerful tool for drug discovery and mechanistic studies of hair cell protection.</p>","PeriodicalId":21576,"journal":{"name":"Science China Life Sciences","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11427-024-2803-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Hair cells in the mammalian cochlea are highly vulnerable to damage from drug toxicity, noise exposure, aging, and genetic mutations, with no capacity for regeneration. Progress in hair cell protection research has been limited by the scarcity of cochlear tissue and suitable in vitro models. Here, we present a novel one-step, self-organizing inner ear organoid system optimized with small molecules, which bypasses the need for multi-step expansion and forced differentiation protocols. This approach efficiently generates hair cells and supporting cells that recapitulate the molecular, cellular, and structural characteristics of the inner ear. Single-cell RNA sequencing revealed the diversity and fidelity of cell populations within the organoids. Utilizing this platform, we validated the protective effects of candidate compounds against hair cell damage, highlighting its potential as a powerful tool for drug discovery and mechanistic studies of hair cell protection.
期刊介绍:
Science China Life Sciences is a scholarly journal co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and it is published by Science China Press. The journal is dedicated to publishing high-quality, original research findings in both basic and applied life science research.