Contribution of Nuclear Fragmentation to Dose and RBE in Carbon-Ion Radiotherapy.

IF 2.5 3区 医学 Q2 BIOLOGY
Shannon Hartzell, Fada Guan, Giuseppe Magro, Paige Taylor, Phillip J Taddei, Christine B Peterson, Stephen Kry
{"title":"Contribution of Nuclear Fragmentation to Dose and RBE in Carbon-Ion Radiotherapy.","authors":"Shannon Hartzell, Fada Guan, Giuseppe Magro, Paige Taylor, Phillip J Taddei, Christine B Peterson, Stephen Kry","doi":"10.1667/RADE-24-00164.1","DOIUrl":null,"url":null,"abstract":"<p><p>Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo. Using these beams, input parameters for each model (microdosimetric spectra, DNA double-strand break yield, kinetic energy spectra, physical dose fragment contributions) were calculated for each contributing carbon beam fragment (hydrogen, helium, lithium, beryllium, boron, secondary carbon, primary carbon, electrons, and \"other\"). Scored input parameters for each fragment were used to calculate linear (α) and quadratic (β) parameters according to each model, which were combined with reference α and β values and absorbed physical dose to calculate RBE. Contributions from secondary fragments were found to exceed 30% of the total physical dose. Using identical beam parameters, the four models produced not only different RBE values but also different RBE trends. In all models, RBE was highest for secondary carbon ions. Beyond secondary carbons, the RBE magnitude typically increased with the atomic number of the fragment, but RBE trends differed dramatically by model and beamline region (entrance, spread-out Bragg peak, and tail). Variations in fragment RBE were large enough to be apparent in biological dose predictions. This study demonstrated that fragmentation is a nonnegligible consideration in carbon radiotherapy. Our findings identified differences in RBE among specific fragments and the four models, contributing to variability in the total biological dose across models. Because these findings emphasize differences in how various models handle carbon beam fragments, greater care should be taken in characterization of secondary fragments in particle therapy.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00164.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Variable relative biological effectiveness (RBE) of carbon radiotherapy may be calculated using several models, including the microdosimetric kinetic model (MKM), stochastic MKM (SMKM), repair-misrepair-fixation (RMF) model, and local effect model I (LEM), which have not been thoroughly compared. In this work, we compared how these four models handle carbon beam fragmentation, providing insight into where model differences arise. Monoenergetic and spread-out Bragg peak carbon beams incident on a water phantom were simulated using Monte Carlo. Using these beams, input parameters for each model (microdosimetric spectra, DNA double-strand break yield, kinetic energy spectra, physical dose fragment contributions) were calculated for each contributing carbon beam fragment (hydrogen, helium, lithium, beryllium, boron, secondary carbon, primary carbon, electrons, and "other"). Scored input parameters for each fragment were used to calculate linear (α) and quadratic (β) parameters according to each model, which were combined with reference α and β values and absorbed physical dose to calculate RBE. Contributions from secondary fragments were found to exceed 30% of the total physical dose. Using identical beam parameters, the four models produced not only different RBE values but also different RBE trends. In all models, RBE was highest for secondary carbon ions. Beyond secondary carbons, the RBE magnitude typically increased with the atomic number of the fragment, but RBE trends differed dramatically by model and beamline region (entrance, spread-out Bragg peak, and tail). Variations in fragment RBE were large enough to be apparent in biological dose predictions. This study demonstrated that fragmentation is a nonnegligible consideration in carbon radiotherapy. Our findings identified differences in RBE among specific fragments and the four models, contributing to variability in the total biological dose across models. Because these findings emphasize differences in how various models handle carbon beam fragments, greater care should be taken in characterization of secondary fragments in particle therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Radiation research
Radiation research 医学-核医学
CiteScore
5.10
自引率
8.80%
发文量
179
审稿时长
1 months
期刊介绍: Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with chemical agents contributing to the understanding of radiation effects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信