Hamza Sonalcan, Enes Bilen, Bahar Ateş, Ahmet Çağdaş Seçkin
{"title":"Action Recognition in Basketball with Inertial Measurement Unit-Supported Vest.","authors":"Hamza Sonalcan, Enes Bilen, Bahar Ateş, Ahmet Çağdaş Seçkin","doi":"10.3390/s25020563","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, an action recognition system was developed to identify fundamental basketball movements using a single Inertial Measurement Unit (IMU) sensor embedded in a wearable vest. This study aims to enhance basketball training by providing a high-performance, low-cost solution that minimizes discomfort for athletes. Data were collected from 21 collegiate basketball players, and movements such as dribbling, passing, shooting, layup, and standing still were recorded. The collected IMU data underwent preprocessing and feature extraction, followed by the application of machine learning algorithms including KNN, decision tree, Random Forest, AdaBoost, and XGBoost. Among these, the XGBoost algorithm with a window size of 250 and a 75% overlap yielded the highest accuracy of 96.6%. The system demonstrated superior performance compared to other single-sensor systems, achieving an overall classification accuracy of 96.9%. This research contributes to the field by presenting a new dataset of basketball movements, comparing the effectiveness of various feature extraction and machine learning methods, and offering a scalable, efficient, and accurate action recognition system for basketball.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769260/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020563","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, an action recognition system was developed to identify fundamental basketball movements using a single Inertial Measurement Unit (IMU) sensor embedded in a wearable vest. This study aims to enhance basketball training by providing a high-performance, low-cost solution that minimizes discomfort for athletes. Data were collected from 21 collegiate basketball players, and movements such as dribbling, passing, shooting, layup, and standing still were recorded. The collected IMU data underwent preprocessing and feature extraction, followed by the application of machine learning algorithms including KNN, decision tree, Random Forest, AdaBoost, and XGBoost. Among these, the XGBoost algorithm with a window size of 250 and a 75% overlap yielded the highest accuracy of 96.6%. The system demonstrated superior performance compared to other single-sensor systems, achieving an overall classification accuracy of 96.9%. This research contributes to the field by presenting a new dataset of basketball movements, comparing the effectiveness of various feature extraction and machine learning methods, and offering a scalable, efficient, and accurate action recognition system for basketball.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.