Madalina Oprea, Andreea Madalina Pandele, Aurelia Cristina Nechifor, Adrian Ionut Nicoara, Iulian Vasile Antoniac, Augustin Semenescu, Stefan Ioan Voicu, Catalin Ionel Enachescu, Anca Maria Fratila
{"title":"Improved Biomineralization Using Cellulose Acetate/Magnetic Nanoparticles Composite Membranes.","authors":"Madalina Oprea, Andreea Madalina Pandele, Aurelia Cristina Nechifor, Adrian Ionut Nicoara, Iulian Vasile Antoniac, Augustin Semenescu, Stefan Ioan Voicu, Catalin Ionel Enachescu, Anca Maria Fratila","doi":"10.3390/polym17020209","DOIUrl":null,"url":null,"abstract":"<p><p>Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it was found that the inclusions of nanosized fillers in the coating structure improves biomineralization and consequently implant osseointegration, as the nanoparticles represent calcium phosphate nucleation centers and lead to the deposition of highly organized hydroxyapatite crystallites on the implant surface. In this study, magnetic nanoparticles synthesized by the co-precipitation method were used for the preparation of cellulose acetate composite coatings through the phase-inversion method. The biomineralization ability of the membranes was tested through the Taguchi method, and it was found that nanostructured hydroxyapatite was formed at the surface of the composite membrane (with a higher organization degree and purity, and a Ca/P percentage closer to the one seen with stoichiometric hydroxyapatite, compared to the one deposited on neat cellulose acetate). The results obtained indicate a potential new application for magnetic nanoparticles in the field of orthopedics.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768280/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020209","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Following implantation, infections, inflammatory reactions, corrosion, mismatches in the elastic modulus, stress shielding and excessive wear are the most frequent reasons for orthopedic implant failure. Natural polymer-based coatings showed especially good results in achieving better cell attachment, growth and tissue-implant integration, and it was found that the inclusions of nanosized fillers in the coating structure improves biomineralization and consequently implant osseointegration, as the nanoparticles represent calcium phosphate nucleation centers and lead to the deposition of highly organized hydroxyapatite crystallites on the implant surface. In this study, magnetic nanoparticles synthesized by the co-precipitation method were used for the preparation of cellulose acetate composite coatings through the phase-inversion method. The biomineralization ability of the membranes was tested through the Taguchi method, and it was found that nanostructured hydroxyapatite was formed at the surface of the composite membrane (with a higher organization degree and purity, and a Ca/P percentage closer to the one seen with stoichiometric hydroxyapatite, compared to the one deposited on neat cellulose acetate). The results obtained indicate a potential new application for magnetic nanoparticles in the field of orthopedics.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.