The Application of Supervised Machine Learning Algorithms for Image Alignment in Multi-Channel Imaging Systems.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-01-18 DOI:10.3390/s25020544
Kyrylo Romanenko, Yevgen Oberemok, Ivan Syniavskyi, Natalia Bezugla, Pawel Komada, Mykhailo Bezuglyi
{"title":"The Application of Supervised Machine Learning Algorithms for Image Alignment in Multi-Channel Imaging Systems.","authors":"Kyrylo Romanenko, Yevgen Oberemok, Ivan Syniavskyi, Natalia Bezugla, Pawel Komada, Mykhailo Bezuglyi","doi":"10.3390/s25020544","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents a method for aligning the geometric parameters of images in multi-channel imaging systems based on the application of pre-processing methods, machine learning algorithms, and a calibration setup using an array of orderly markers at the nodes of an imaginary grid. According to the proposed method, one channel of the system is used as a reference. The images from the calibration setup in each channel determine the coordinates of the markers, and the displacements of the marker centers in the system's channels relative to the coordinates of the centers in the reference channel are then determined. Correction models are obtained as multiple polynomial regression models based on these displacements. These correction models align the geometric parameters of the images in the system channels before they are used in the calculations. The models are derived once, allowing for geometric calibration of the imaging system. The developed method is applied to align the images in the channels of a module of a multispectral imaging polarimeter. As a result, the standard image alignment error in the polarimeter channels is reduced from 4.8 to 0.5 pixels.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768783/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020544","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a method for aligning the geometric parameters of images in multi-channel imaging systems based on the application of pre-processing methods, machine learning algorithms, and a calibration setup using an array of orderly markers at the nodes of an imaginary grid. According to the proposed method, one channel of the system is used as a reference. The images from the calibration setup in each channel determine the coordinates of the markers, and the displacements of the marker centers in the system's channels relative to the coordinates of the centers in the reference channel are then determined. Correction models are obtained as multiple polynomial regression models based on these displacements. These correction models align the geometric parameters of the images in the system channels before they are used in the calculations. The models are derived once, allowing for geometric calibration of the imaging system. The developed method is applied to align the images in the channels of a module of a multispectral imaging polarimeter. As a result, the standard image alignment error in the polarimeter channels is reduced from 4.8 to 0.5 pixels.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信