Xiaoli Chen, Xinyu Zhou, Xiaoxue Xie, Bo Li, Teng Zhao, Haotian Yu, Dan Xing, Jiahong Wu, Chunxiao Li
{"title":"Functional Verification of Differentially Expressed Genes Following DENV2 Infection in <i>Aedes aegypti</i>.","authors":"Xiaoli Chen, Xinyu Zhou, Xiaoxue Xie, Bo Li, Teng Zhao, Haotian Yu, Dan Xing, Jiahong Wu, Chunxiao Li","doi":"10.3390/v17010067","DOIUrl":null,"url":null,"abstract":"<p><p>The dengue virus (DENV) is primarily transmitted by <i>Aedes aegypti</i>. Investigating genes associated with mosquito susceptibility to DENV2 offers a theoretical foundation for targeted interventions to regulate or block viral replication and transmission within mosquitoes. Based on the transcriptomic analyses of the midgut and salivary glands from <i>Aedes aegypti</i> infected with DENV2, alongside analyses of Aag2 cell infections, 24 genes potentially related to the regulation of <i>Aedes aegypti</i> infection with DENV2 were selected. By establishing transient transfection and overexpression models of <i>Aedes aegypti</i> Aag2 cells, and mosquito target gene interference models, the difference in viral load before and after treatment was compared, and the effects of DEGs on viral replication were evaluated. After overexpressing 24 DEGs in Aag2 cells, 19 DEGs showed a significant difference in DENV2 RNA copies in the cell supernatant (<i>p</i> < 0.05). In adult mosquitoes, knocking down defensin-A, defensin-A-like, and SMCT1 respectively reduced the DENV2 RNA copies, while knocking down UGT2B1 and ND4 respectively increased the DENV2 RNA copies. In this study, to assess the role of genes related to DENV2 replication, and transient transfection and overexpression models in Aag2 cells and mosquito gene knockdown models were established, and five genes, defensin-A, defensin-A-like, SMCT1, UGT2B1, and ND4, were found to have an impact on the replication of DENV2, providing a reference basis for studying the complex mechanism of mosquito-virus interactions.</p>","PeriodicalId":49328,"journal":{"name":"Viruses-Basel","volume":"17 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769442/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Viruses-Basel","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/v17010067","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The dengue virus (DENV) is primarily transmitted by Aedes aegypti. Investigating genes associated with mosquito susceptibility to DENV2 offers a theoretical foundation for targeted interventions to regulate or block viral replication and transmission within mosquitoes. Based on the transcriptomic analyses of the midgut and salivary glands from Aedes aegypti infected with DENV2, alongside analyses of Aag2 cell infections, 24 genes potentially related to the regulation of Aedes aegypti infection with DENV2 were selected. By establishing transient transfection and overexpression models of Aedes aegypti Aag2 cells, and mosquito target gene interference models, the difference in viral load before and after treatment was compared, and the effects of DEGs on viral replication were evaluated. After overexpressing 24 DEGs in Aag2 cells, 19 DEGs showed a significant difference in DENV2 RNA copies in the cell supernatant (p < 0.05). In adult mosquitoes, knocking down defensin-A, defensin-A-like, and SMCT1 respectively reduced the DENV2 RNA copies, while knocking down UGT2B1 and ND4 respectively increased the DENV2 RNA copies. In this study, to assess the role of genes related to DENV2 replication, and transient transfection and overexpression models in Aag2 cells and mosquito gene knockdown models were established, and five genes, defensin-A, defensin-A-like, SMCT1, UGT2B1, and ND4, were found to have an impact on the replication of DENV2, providing a reference basis for studying the complex mechanism of mosquito-virus interactions.
期刊介绍:
Viruses (ISSN 1999-4915) is an open access journal which provides an advanced forum for studies of viruses. It publishes reviews, regular research papers, communications, conference reports and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. We also encourage the publication of timely reviews and commentaries on topics of interest to the virology community and feature highlights from the virology literature in the ''News and Views'' section. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.