The Application of an Intelligent Agaricus bisporus-Harvesting Device Based on FES-YOLOv5s.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-01-17 DOI:10.3390/s25020519
Hao Ma, Yulong Ding, Hongwei Cui, Jiangtao Ji, Xin Jin, Tianhang Ding, Jiaoling Wang
{"title":"The Application of an Intelligent <i>Agaricus bisporus</i>-Harvesting Device Based on FES-YOLOv5s.","authors":"Hao Ma, Yulong Ding, Hongwei Cui, Jiangtao Ji, Xin Jin, Tianhang Ding, Jiaoling Wang","doi":"10.3390/s25020519","DOIUrl":null,"url":null,"abstract":"<p><p>To address several challenges, including low efficiency, significant damage, and high costs, associated with the manual harvesting of <i>Agaricus bisporus</i>, in this study, a machine vision-based intelligent harvesting device was designed according to its agronomic characteristics and morphological features. This device mainly comprised a frame, camera, truss-type robotic arm, flexible manipulator, and control system. The FES-YOLOv5s deep learning target detection model was used to accurately identify and locate <i>Agaricus bisporus</i>. The harvesting control system, using a Jetson Orin Nano as the main controller, adopted an S-curve acceleration and deceleration motor control algorithm. This algorithm controlled the robotic arm and the flexible manipulator to harvest <i>Agaricus bisporus</i> based on the identification and positioning results. To confirm the impact of vibration on the harvesting process, a stepper motor drive test was conducted using both trapezoidal and S-curve acceleration and deceleration motor control algorithms. The test results showed that the S-curve acceleration and deceleration motor control algorithm exhibited excellent performance in vibration reduction and repeat positioning accuracy. The recognition efficiency and harvesting effectiveness of the intelligent harvesting device were tested using recognition accuracy, harvesting success rate, and damage rate as evaluation metrics. The results showed that the <i>Agaricus bisporus</i> recognition algorithm achieved an average recognition accuracy of 96.72%, with an average missed detection rate of 2.13% and a false detection rate of 1.72%. The harvesting success rate of the intelligent harvesting device was 94.95%, with an average damage rate of 2.67% and an average harvesting yield rate of 87.38%. These results meet the requirements for the intelligent harvesting of <i>Agaricus bisporus</i> and provide insight into the development of intelligent harvesting robots in the industrial production of <i>Agaricus bisporus</i>.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768792/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020519","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To address several challenges, including low efficiency, significant damage, and high costs, associated with the manual harvesting of Agaricus bisporus, in this study, a machine vision-based intelligent harvesting device was designed according to its agronomic characteristics and morphological features. This device mainly comprised a frame, camera, truss-type robotic arm, flexible manipulator, and control system. The FES-YOLOv5s deep learning target detection model was used to accurately identify and locate Agaricus bisporus. The harvesting control system, using a Jetson Orin Nano as the main controller, adopted an S-curve acceleration and deceleration motor control algorithm. This algorithm controlled the robotic arm and the flexible manipulator to harvest Agaricus bisporus based on the identification and positioning results. To confirm the impact of vibration on the harvesting process, a stepper motor drive test was conducted using both trapezoidal and S-curve acceleration and deceleration motor control algorithms. The test results showed that the S-curve acceleration and deceleration motor control algorithm exhibited excellent performance in vibration reduction and repeat positioning accuracy. The recognition efficiency and harvesting effectiveness of the intelligent harvesting device were tested using recognition accuracy, harvesting success rate, and damage rate as evaluation metrics. The results showed that the Agaricus bisporus recognition algorithm achieved an average recognition accuracy of 96.72%, with an average missed detection rate of 2.13% and a false detection rate of 1.72%. The harvesting success rate of the intelligent harvesting device was 94.95%, with an average damage rate of 2.67% and an average harvesting yield rate of 87.38%. These results meet the requirements for the intelligent harvesting of Agaricus bisporus and provide insight into the development of intelligent harvesting robots in the industrial production of Agaricus bisporus.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信