Unidirectional Polyvinylidene/Copper-Impregnated Nanohydroxyapatite Composite Membrane Prepared by Electrospinning with Piezoelectricity and Biocompatibility for Potential Ligament Repair.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-01-14 DOI:10.3390/polym17020185
Chih-Hsin Cheng, Wen-Cheng Chen, Wen-Chieh Yang, Sen-Chi Yang, Shih-Ming Liu, Ya-Shun Chen, Jian-Chih Chen
{"title":"Unidirectional Polyvinylidene/Copper-Impregnated Nanohydroxyapatite Composite Membrane Prepared by Electrospinning with Piezoelectricity and Biocompatibility for Potential Ligament Repair.","authors":"Chih-Hsin Cheng, Wen-Cheng Chen, Wen-Chieh Yang, Sen-Chi Yang, Shih-Ming Liu, Ya-Shun Chen, Jian-Chih Chen","doi":"10.3390/polym17020185","DOIUrl":null,"url":null,"abstract":"<p><p>Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair. These membranes were created through electrospinning using piezoelectric polyvinylidene fluoride (PVDF) composites, which contained 1 wt.% and 3 wt.% of copper-impregnated nanohydroxyapatite (Cu-nHA). The proposed electrospun membrane would feature an aligned fiber structure achieved through high-speed roller stretching, which mimics the properties of biomimetic ligaments. Nanoparticles of Cu-nHA had been composited into PVDF to enhance the pirzoelectric β-phase of the PVDF crystallines. The study assessed the physicochemical properties, antibacterial activity, and biocompatibility of the membranes in vitro. A microstructure analysis revealed that the composite membrane exhibited a bionic structure with aligned fibers resembling human ligaments. The piezoelectric performance of the experimental group containing 3 wt.% Cu-nHA was significantly improved to 25.02 ± 0.68 V/g·m<sup>-2</sup> compared with that of the pure PVDF group at 18.98 ± 1.18 V/g·m<sup>-2</sup>. Further enhancement in piezoelectric performance by 31.8% was achieved by manipulating the semicrystalline structures. Antibacterial and cytotoxicity tests showed that the composite membrane inherited the antibacterial properties of Cu-nHA nanoparticles without causing cytotoxic reactions. Tensile tests revealed that the membrane's flexibility of strain was adequate for use as artificial scaffolds for ligaments. In particular, the mechanical properties of the two experimental groups containing Cu-nHA were significantly enhanced compared with those of the pure PVDF group. The favorable piezoelectric and flexible properties are highly beneficial for ligament tissue regeneration. This study successfully developed PVDF/Cu-nHA piezoelectric fibers for a biocompatible, unidirectional piezoelectric membrane with potential applications as ligament repair scaffolds.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769023/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020185","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Ligament tears can strongly influence an individual's daily life and ability to engage in physical activities. It is essential to develop artificial scaffolds for ligament repairs in order to effectively restore damaged ligaments. In this experiment, the objective was to evaluate fibrous membranes as scaffolds for ligament repair. These membranes were created through electrospinning using piezoelectric polyvinylidene fluoride (PVDF) composites, which contained 1 wt.% and 3 wt.% of copper-impregnated nanohydroxyapatite (Cu-nHA). The proposed electrospun membrane would feature an aligned fiber structure achieved through high-speed roller stretching, which mimics the properties of biomimetic ligaments. Nanoparticles of Cu-nHA had been composited into PVDF to enhance the pirzoelectric β-phase of the PVDF crystallines. The study assessed the physicochemical properties, antibacterial activity, and biocompatibility of the membranes in vitro. A microstructure analysis revealed that the composite membrane exhibited a bionic structure with aligned fibers resembling human ligaments. The piezoelectric performance of the experimental group containing 3 wt.% Cu-nHA was significantly improved to 25.02 ± 0.68 V/g·m-2 compared with that of the pure PVDF group at 18.98 ± 1.18 V/g·m-2. Further enhancement in piezoelectric performance by 31.8% was achieved by manipulating the semicrystalline structures. Antibacterial and cytotoxicity tests showed that the composite membrane inherited the antibacterial properties of Cu-nHA nanoparticles without causing cytotoxic reactions. Tensile tests revealed that the membrane's flexibility of strain was adequate for use as artificial scaffolds for ligaments. In particular, the mechanical properties of the two experimental groups containing Cu-nHA were significantly enhanced compared with those of the pure PVDF group. The favorable piezoelectric and flexible properties are highly beneficial for ligament tissue regeneration. This study successfully developed PVDF/Cu-nHA piezoelectric fibers for a biocompatible, unidirectional piezoelectric membrane with potential applications as ligament repair scaffolds.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信