Xianjie Li, Jian Zhang, Yaqian Zhang, Cuo Guan, Zheyu Liu, Ke Hu, Ruokun Xian, Yiqiang Li
{"title":"Experimental Study on the Application of Polymer Agents in Offshore Oil Fields: Optimization Design for Enhanced Oil Recovery.","authors":"Xianjie Li, Jian Zhang, Yaqian Zhang, Cuo Guan, Zheyu Liu, Ke Hu, Ruokun Xian, Yiqiang Li","doi":"10.3390/polym17020244","DOIUrl":null,"url":null,"abstract":"<p><p>The Bohai oilfield is characterized by severe heterogeneity and high average permeability, leading to a low water flooding recovery efficiency. Polymer flooding only works for a certain heterogeneous reservoir. Therefore, supplementary technologies for further enlarging the swept volume are still necessary. Based on the concept of discontinuous chemical flooding with multi slugs, three chemical systems, which were polymer gel (PG), hydrophobically associating polymer (polymer A), and conventional polymer (polymer B), were selected as the profile control and displacing agents. The optimization design of the discontinuous chemical flooding was investigated by core flooding experiments and displacement equilibrium degree calculation. The gel, polymer A, and polymer B were classified into three levels based on their profile control performance. The degree of displacement equilibrium was defined by considering the sweep conditions and oil displacement efficiency of each layer. The effectiveness of displacement equilibrium degree was validated through a three-core parallel displacement experiment. Additionally, the parallel core displacement experiment optimized the slug size, combination method, and shift timing of chemicals. Finally, a five-core parallel displacement experiment verified the enhanced oil recovery (EOR) performance of discontinuous chemical flooding. The results show that the displacement equilibrium curve exhibited a stepwise change. The efficiency of discontinuous chemical flooding became more significant with the number of layers increasing and heterogeneity intensifying. Under the combination of permeability of 5000/2000/500 mD, the optimal chemical dosage for the chemical discontinuous flooding was a 0.7 pore volume (PV). The optimal combination pattern was the alternation injection in the form of \"medium-strong-weak-strong-weak\", achieving a displacement equilibrium degree of 82.3%. The optimal shift timing of chemicals occurred at a water cut of 70%, yielding a displacement equilibrium degree of 87.7%. The five-core parallel displacement experiment demonstrated that discontinuous chemical flooding could get a higher incremental oil recovery of 24.5% compared to continuous chemical flooding, which presented a significantly enhanced oil recovery potential.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768237/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020244","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Bohai oilfield is characterized by severe heterogeneity and high average permeability, leading to a low water flooding recovery efficiency. Polymer flooding only works for a certain heterogeneous reservoir. Therefore, supplementary technologies for further enlarging the swept volume are still necessary. Based on the concept of discontinuous chemical flooding with multi slugs, three chemical systems, which were polymer gel (PG), hydrophobically associating polymer (polymer A), and conventional polymer (polymer B), were selected as the profile control and displacing agents. The optimization design of the discontinuous chemical flooding was investigated by core flooding experiments and displacement equilibrium degree calculation. The gel, polymer A, and polymer B were classified into three levels based on their profile control performance. The degree of displacement equilibrium was defined by considering the sweep conditions and oil displacement efficiency of each layer. The effectiveness of displacement equilibrium degree was validated through a three-core parallel displacement experiment. Additionally, the parallel core displacement experiment optimized the slug size, combination method, and shift timing of chemicals. Finally, a five-core parallel displacement experiment verified the enhanced oil recovery (EOR) performance of discontinuous chemical flooding. The results show that the displacement equilibrium curve exhibited a stepwise change. The efficiency of discontinuous chemical flooding became more significant with the number of layers increasing and heterogeneity intensifying. Under the combination of permeability of 5000/2000/500 mD, the optimal chemical dosage for the chemical discontinuous flooding was a 0.7 pore volume (PV). The optimal combination pattern was the alternation injection in the form of "medium-strong-weak-strong-weak", achieving a displacement equilibrium degree of 82.3%. The optimal shift timing of chemicals occurred at a water cut of 70%, yielding a displacement equilibrium degree of 87.7%. The five-core parallel displacement experiment demonstrated that discontinuous chemical flooding could get a higher incremental oil recovery of 24.5% compared to continuous chemical flooding, which presented a significantly enhanced oil recovery potential.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.