The Effectiveness of Polyhydroxyalkanoate (PHA) Extraction Methods in Gram-Negative Pseudomonas putida U.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-01-09 DOI:10.3390/polym17020150
Luis Getino, Irene García, Alfonso Cornejo, Raúl Mateos, Luisa M Ariza-Carmona, Natalia Sánchez-Castro, José F Moran, Elías R Olivera, Alejandro Chamizo-Ampudia
{"title":"The Effectiveness of Polyhydroxyalkanoate (PHA) Extraction Methods in Gram-Negative <i>Pseudomonas putida</i> U.","authors":"Luis Getino, Irene García, Alfonso Cornejo, Raúl Mateos, Luisa M Ariza-Carmona, Natalia Sánchez-Castro, José F Moran, Elías R Olivera, Alejandro Chamizo-Ampudia","doi":"10.3390/polym17020150","DOIUrl":null,"url":null,"abstract":"<p><p>Bioplastics are emerging as a promising solution to reduce pollution caused by petroleum-based plastics. Among them, polyhydroxyalkanoates (PHAs) stand out as viable biotechnological alternatives, though their commercialization is limited by expensive downstream processes. Traditional PHA extraction methods often involve toxic solvents and high energy consumption, underscoring the need for more sustainable approaches. This study evaluated physical and chemical methods to extract PHAs from <i>Pseudomonas putida</i> U, a bacterium known to produce poly-3-hydroxyoctanoate P(3HO). Lyophilized cells underwent six extraction methods, including the use of the following: boiling, sonication, sodium hypochlorite (NaClO), sodium dodecyl sulfate (SDS), sodium hydroxide (NaOH), and chloroform. Physical methods such as boiling and sonication achieved yields of 70% and 60%, respectively, but P(3HO) recovery remained low (30-40%). NaClO extraction provided higher yields (80%) but resulted in significant impurities (70%). NaOH methods offered moderate yields (50-80%), with P(3HO) purities between 50% and 70%, depending on the conditions. Spectroscopic and analytical techniques (FTIR, TGA, NMR, GPC) identified 0.05 M NaOH at 60 °C as the optimal extraction condition, delivering high P(3HO) purity while minimizing environmental impact. This positions NaOH as a sustainable alternative to traditional halogenated solvents, paving the way for more eco-friendly PHA production processes.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769110/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020150","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Bioplastics are emerging as a promising solution to reduce pollution caused by petroleum-based plastics. Among them, polyhydroxyalkanoates (PHAs) stand out as viable biotechnological alternatives, though their commercialization is limited by expensive downstream processes. Traditional PHA extraction methods often involve toxic solvents and high energy consumption, underscoring the need for more sustainable approaches. This study evaluated physical and chemical methods to extract PHAs from Pseudomonas putida U, a bacterium known to produce poly-3-hydroxyoctanoate P(3HO). Lyophilized cells underwent six extraction methods, including the use of the following: boiling, sonication, sodium hypochlorite (NaClO), sodium dodecyl sulfate (SDS), sodium hydroxide (NaOH), and chloroform. Physical methods such as boiling and sonication achieved yields of 70% and 60%, respectively, but P(3HO) recovery remained low (30-40%). NaClO extraction provided higher yields (80%) but resulted in significant impurities (70%). NaOH methods offered moderate yields (50-80%), with P(3HO) purities between 50% and 70%, depending on the conditions. Spectroscopic and analytical techniques (FTIR, TGA, NMR, GPC) identified 0.05 M NaOH at 60 °C as the optimal extraction condition, delivering high P(3HO) purity while minimizing environmental impact. This positions NaOH as a sustainable alternative to traditional halogenated solvents, paving the way for more eco-friendly PHA production processes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信