{"title":"Cavitation and Other Deformation Instabilities in Plastic Deformation of Semicrystalline Polyethylene Modified with Paraffin Wax.","authors":"Alina Vozniak, Zbigniew Bartczak","doi":"10.3390/polym17020202","DOIUrl":null,"url":null,"abstract":"<p><p>The deformation behavior and instabilities occurring during the drawing of high-density polyethylene (HDPE) were investigated using wide- and small-angle X-ray scattering (WAXS and SAXS) and scanning electron microscopy (SEM) in plain HDPE and paraffin wax- and/or chloroform-modified samples. In contrast to neat HDPE, the modified materials demonstrated strongly suppressed cavitation. However, regardless of cavitation, the tensile deformation of all samples was found to be governed by crystallographic mechanisms active in the crystalline lamellae, supported by shear in the amorphous layers, i.e., the same mechanisms as those operating in other deformation modes. In addition to cavitation, which seems to be a tension-specific phenomenon that does not have a major effect on the deformation sequence, two other important deformation instabilities were observed: microbuckling followed by development of lamellar kinks, at true strain of e = 0.3-0.4, and slip localization instability leading to lamellar fragmentation at e > 0.6. These instabilities were found to be common and very important steps in the deformation sequence, greatly influencing the deformation behavior and occurring in similar strain ranges in both compression and tension, regardless of cavitation. In contrast, cavitation is not able to substitute or significantly modify the main deformation mechanisms, and, furthermore, it does not compete with the main instabilities associated with crystalline lamellae, especially microbuckling; therefore, it may be considered a tension-specific side effect that is not essential for plastic deformation behavior, although it can still significantly affect the final properties and appearance of the drawn material.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768404/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020202","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The deformation behavior and instabilities occurring during the drawing of high-density polyethylene (HDPE) were investigated using wide- and small-angle X-ray scattering (WAXS and SAXS) and scanning electron microscopy (SEM) in plain HDPE and paraffin wax- and/or chloroform-modified samples. In contrast to neat HDPE, the modified materials demonstrated strongly suppressed cavitation. However, regardless of cavitation, the tensile deformation of all samples was found to be governed by crystallographic mechanisms active in the crystalline lamellae, supported by shear in the amorphous layers, i.e., the same mechanisms as those operating in other deformation modes. In addition to cavitation, which seems to be a tension-specific phenomenon that does not have a major effect on the deformation sequence, two other important deformation instabilities were observed: microbuckling followed by development of lamellar kinks, at true strain of e = 0.3-0.4, and slip localization instability leading to lamellar fragmentation at e > 0.6. These instabilities were found to be common and very important steps in the deformation sequence, greatly influencing the deformation behavior and occurring in similar strain ranges in both compression and tension, regardless of cavitation. In contrast, cavitation is not able to substitute or significantly modify the main deformation mechanisms, and, furthermore, it does not compete with the main instabilities associated with crystalline lamellae, especially microbuckling; therefore, it may be considered a tension-specific side effect that is not essential for plastic deformation behavior, although it can still significantly affect the final properties and appearance of the drawn material.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.