Damping Optimization and Energy Absorption of Mechanical Metamaterials for Enhanced Vibration Control Applications: A Critical Review.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-01-18 DOI:10.3390/polym17020237
Fayyaz, Salem Bashmal, Aamer Nazir, Sikandar Khan, Abdulrahman Alofi
{"title":"Damping Optimization and Energy Absorption of Mechanical Metamaterials for Enhanced Vibration Control Applications: A Critical Review.","authors":"Fayyaz, Salem Bashmal, Aamer Nazir, Sikandar Khan, Abdulrahman Alofi","doi":"10.3390/polym17020237","DOIUrl":null,"url":null,"abstract":"<p><p>Metamaterials are pushing the limits of traditional materials and are fascinating frontiers in scientific innovation. Mechanical metamaterials (MMs) are a category of metamaterials that display properties and performances that cannot be realized in conventional materials. Exploring the mechanical properties and various aspects of vibration and damping control is becoming a crucial research area. Their geometries have intricate features inspired by nature, which make them challenging to model and fabricate. The fabrication of MMs has become possible because of the emergence of additive manufacturing (AM) technology. Mechanical vibrations in engineering applications are common and depend on inertia, stiffness, damping, and external excitation. Vibration and damping control are important aspects of MM in vibrational environments and need to be enhanced and explored. This comprehensive review covers different vibration and damping control aspects of MMs fabricated using polymers and other engineering materials. Different morphological configurations of MMs are critically reviewed, covering crucial vibration aspects, including bandgap formation, energy absorption, and damping control to suppress, attenuate, isolate, and absorb vibrations. Bandgap formation using different MM configurations is presented and reviewed. Furthermore, studies on the energy dissipation and absorption of MMs are briefly discussed. In addition, the vibration damping of various lattice structures is reviewed along with their analytical modeling and experimental measurements. Finally, possible research gaps are highlighted, and a general systematic procedure to address these areas is suggested for future research. This review paper may lay a foundation for young researchers intending to start and pursue research on additive-manufactured MM lattice structures for vibration control applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768216/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020237","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Metamaterials are pushing the limits of traditional materials and are fascinating frontiers in scientific innovation. Mechanical metamaterials (MMs) are a category of metamaterials that display properties and performances that cannot be realized in conventional materials. Exploring the mechanical properties and various aspects of vibration and damping control is becoming a crucial research area. Their geometries have intricate features inspired by nature, which make them challenging to model and fabricate. The fabrication of MMs has become possible because of the emergence of additive manufacturing (AM) technology. Mechanical vibrations in engineering applications are common and depend on inertia, stiffness, damping, and external excitation. Vibration and damping control are important aspects of MM in vibrational environments and need to be enhanced and explored. This comprehensive review covers different vibration and damping control aspects of MMs fabricated using polymers and other engineering materials. Different morphological configurations of MMs are critically reviewed, covering crucial vibration aspects, including bandgap formation, energy absorption, and damping control to suppress, attenuate, isolate, and absorb vibrations. Bandgap formation using different MM configurations is presented and reviewed. Furthermore, studies on the energy dissipation and absorption of MMs are briefly discussed. In addition, the vibration damping of various lattice structures is reviewed along with their analytical modeling and experimental measurements. Finally, possible research gaps are highlighted, and a general systematic procedure to address these areas is suggested for future research. This review paper may lay a foundation for young researchers intending to start and pursue research on additive-manufactured MM lattice structures for vibration control applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信