{"title":"Performance and Energy Consumption Analysis for UWSNs with Priority Scheduling Based on Access Probability and Wakeup Threshold.","authors":"Ning Li, Zhiyu Xiang, Liang Feng, Zhiqiang Gao, Jiaqi Liu, Haitao Gu","doi":"10.3390/s25020570","DOIUrl":null,"url":null,"abstract":"<p><p>As advancements in autonomous underwater vehicle (AUV) technology unfold, the role of underwater wireless sensor networks (UWSNs) is becoming increasingly pivotal. However, the high energy consumption in these networks can significantly reduce their operational lifespan, while latency issues can impair overall network performance. To address these challenges, a novel mixed packet forwarding strategy is developed, which incorporates a wakeup threshold and a dynamically adjusted access probability for the cluster head (CH). This approach aims to conserve energy while maintaining acceptable network latency levels. The wakeup threshold restricts the frequency of state switching for the CH, thereby reducing energy consumption. Meanwhile, the dynamic access probability regulates the influx of packets to mitigate system congestion based on current network conditions. Furthermore, to accommodate the network's varied transmission demands, packets generated by sensor nodes (SNs) are categorized into two types according to their sensitivity to latency. A discrete-time queueing model with preemptive priority is then established to evaluate the performance of different packets and the CH. Numerical results show how different parameters affect network performance and demonstrate that the proposed mixed packet forwarding mechanism can effectively manage the trade-off between latency and energy consumption, outperforming the traditional mechanism within a specific range of parameters.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768515/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020570","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
As advancements in autonomous underwater vehicle (AUV) technology unfold, the role of underwater wireless sensor networks (UWSNs) is becoming increasingly pivotal. However, the high energy consumption in these networks can significantly reduce their operational lifespan, while latency issues can impair overall network performance. To address these challenges, a novel mixed packet forwarding strategy is developed, which incorporates a wakeup threshold and a dynamically adjusted access probability for the cluster head (CH). This approach aims to conserve energy while maintaining acceptable network latency levels. The wakeup threshold restricts the frequency of state switching for the CH, thereby reducing energy consumption. Meanwhile, the dynamic access probability regulates the influx of packets to mitigate system congestion based on current network conditions. Furthermore, to accommodate the network's varied transmission demands, packets generated by sensor nodes (SNs) are categorized into two types according to their sensitivity to latency. A discrete-time queueing model with preemptive priority is then established to evaluate the performance of different packets and the CH. Numerical results show how different parameters affect network performance and demonstrate that the proposed mixed packet forwarding mechanism can effectively manage the trade-off between latency and energy consumption, outperforming the traditional mechanism within a specific range of parameters.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.