{"title":"[Research progress in the design and application of whole-cell biosensors for antibiotics].","authors":"Yuke Luo, Yiling Zhu, Jianping Xu, Junfeng Liu, Jianhua Yin","doi":"10.13345/j.cjb.240400","DOIUrl":null,"url":null,"abstract":"<p><p>Antibiotics are chemicals with bactericidal or bacteriostatic activity produced by microorganisms and artificially synthesized. Since the discovery of penicillin by Alexander Fleming in 1928, antibiotics have been widely used in clinical treatments as well as in the animal husbandry and aquaculture, leading to antibiotic residues in soil, water, food and other environments. At the same time, antibiotic resistance is increasingly serious, which necessitates the discovery of novel antibiotics. In recent years, with the development of synthetic biology, researchers have developed a variety of whole-cell biosensors that can respond to antibiotics. These whole-cell biosensors use microbial cells to convert antibiotic signals into readable signals, which can not only perform dynamic detection of antibiotics simply, quickly, sensitively and accurately but also effectively discover novel antibiotics. This review comprehensively summarizes the reported whole-cell biosensors for antibiotics, classifies them into two types (specific and general), and elaborates on the design principles and applications of the two types of antibiotic biosensors. This review will provide reference for the construction and application of other whole-cell biosensors for antibiotics.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 1","pages":"79-91"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Antibiotics are chemicals with bactericidal or bacteriostatic activity produced by microorganisms and artificially synthesized. Since the discovery of penicillin by Alexander Fleming in 1928, antibiotics have been widely used in clinical treatments as well as in the animal husbandry and aquaculture, leading to antibiotic residues in soil, water, food and other environments. At the same time, antibiotic resistance is increasingly serious, which necessitates the discovery of novel antibiotics. In recent years, with the development of synthetic biology, researchers have developed a variety of whole-cell biosensors that can respond to antibiotics. These whole-cell biosensors use microbial cells to convert antibiotic signals into readable signals, which can not only perform dynamic detection of antibiotics simply, quickly, sensitively and accurately but also effectively discover novel antibiotics. This review comprehensively summarizes the reported whole-cell biosensors for antibiotics, classifies them into two types (specific and general), and elaborates on the design principles and applications of the two types of antibiotic biosensors. This review will provide reference for the construction and application of other whole-cell biosensors for antibiotics.
期刊介绍:
Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.