Comprehensive characterization of the bHLH transcription factor family in Curcuma wenyujin and functional elucidation of CwbHLH27 in jasmonate-regulated sesquiterpenoid biosynthesis.
Shiyi Wu, Kaer Lan, Qian Wang, Yi Su, Dengyu Li, Jing Ma, Tianyuan Hu, Xiaopu Yin, Qiuhui Wei
{"title":"Comprehensive characterization of the bHLH transcription factor family in Curcuma wenyujin and functional elucidation of CwbHLH27 in jasmonate-regulated sesquiterpenoid biosynthesis.","authors":"Shiyi Wu, Kaer Lan, Qian Wang, Yi Su, Dengyu Li, Jing Ma, Tianyuan Hu, Xiaopu Yin, Qiuhui Wei","doi":"10.1016/j.plaphy.2025.109527","DOIUrl":null,"url":null,"abstract":"<p><p>Curcuma wenyujin is acknowledged as a crucial medicinal plant containing essential oils, primarily composed of sesquiterpenoids. While numerous sesquiterpenoids exhibit versatile physiological activities, their levels in C. wenyujin are generally low, particularly the pivotal anti-cancer component elemene. Our previous research demonstrated that basic helix-loop-helix (bHLH) is involved in modulating jasmonate-mediated sesquiterpenoid biosynthesis. In this study, a total of 106 CwbHLHs were identified and systematically analyzed. Under MeJA treatment, the expression levels of CwbHLH15, CwbHLH27, CwbHLH58, CwbHLH73, and CwbHLH89 were significantly upregulated, whereas CwbHLH81 was downregulated. Subsequently, CwbHLH27 was selected for further functional characterization. CwbHLH27 overexpression resulted in increased levels of β-elemene, γ-elemene, β-caryophyllene, and curzerene in C. wenyujin leaves. The expression levels of CwHMGS, CwHMGR, CwDXS, CwDXR, CwFPPS, and CwHDR, key enzyme genes in sesquiterpenoid biosynthesis, were upregulated in transgenic lines. Conversely, CwbHLH27 silencing resulted in the opposite effects. Further analysis revealed that CwbHLH27 activated the transcription of CwHMGS, CwHMGR, and CwDXS by directly binding to the E-box cis-elements within their promoters. Moreover, CwbHLH27 interacts with CwJAZ1/17, thereby executing JA signal transduction and regulating sesquiterpenoid biosynthesis in C. wenyujin. Finally, we elucidated the molecular mechanism by which the CwJAZs-CwbHLH27 regulatory module regulates sesquiterpenoid biosynthesis in response to JA signaling. Our research provides a molecular foundation for biotechnological-assisted breeding of varieties with enhanced active ingredient content.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109527"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109527","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Curcuma wenyujin is acknowledged as a crucial medicinal plant containing essential oils, primarily composed of sesquiterpenoids. While numerous sesquiterpenoids exhibit versatile physiological activities, their levels in C. wenyujin are generally low, particularly the pivotal anti-cancer component elemene. Our previous research demonstrated that basic helix-loop-helix (bHLH) is involved in modulating jasmonate-mediated sesquiterpenoid biosynthesis. In this study, a total of 106 CwbHLHs were identified and systematically analyzed. Under MeJA treatment, the expression levels of CwbHLH15, CwbHLH27, CwbHLH58, CwbHLH73, and CwbHLH89 were significantly upregulated, whereas CwbHLH81 was downregulated. Subsequently, CwbHLH27 was selected for further functional characterization. CwbHLH27 overexpression resulted in increased levels of β-elemene, γ-elemene, β-caryophyllene, and curzerene in C. wenyujin leaves. The expression levels of CwHMGS, CwHMGR, CwDXS, CwDXR, CwFPPS, and CwHDR, key enzyme genes in sesquiterpenoid biosynthesis, were upregulated in transgenic lines. Conversely, CwbHLH27 silencing resulted in the opposite effects. Further analysis revealed that CwbHLH27 activated the transcription of CwHMGS, CwHMGR, and CwDXS by directly binding to the E-box cis-elements within their promoters. Moreover, CwbHLH27 interacts with CwJAZ1/17, thereby executing JA signal transduction and regulating sesquiterpenoid biosynthesis in C. wenyujin. Finally, we elucidated the molecular mechanism by which the CwJAZs-CwbHLH27 regulatory module regulates sesquiterpenoid biosynthesis in response to JA signaling. Our research provides a molecular foundation for biotechnological-assisted breeding of varieties with enhanced active ingredient content.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.