Genetic diversity and phylogeography of the global Theileria orientalis isolates inferred from MPSP gene sequences

IF 1.5 4区 医学 Q3 PARASITOLOGY
El-Sayed El-Alfy , Rana Elseadawy , Somaya Saleh , Bassem Elmishmishy , Yara Al-Kappany , Ibrahim Abbas
{"title":"Genetic diversity and phylogeography of the global Theileria orientalis isolates inferred from MPSP gene sequences","authors":"El-Sayed El-Alfy ,&nbsp;Rana Elseadawy ,&nbsp;Somaya Saleh ,&nbsp;Bassem Elmishmishy ,&nbsp;Yara Al-Kappany ,&nbsp;Ibrahim Abbas","doi":"10.1016/j.parint.2025.103038","DOIUrl":null,"url":null,"abstract":"<div><h3>Background/objective</h3><div><em>Theileria orientalis</em> is a non-transforming <em>Theileria</em> species infecting cattle and water buffaloes. Several outbreaks of oriental theileriosis accompanied by considerable economic loss were documented in Asia, Australia, and New Zealand. The major piroplasm surface protein (MPSP) gene has frequently been used to molecularly characterize <em>T. orientalis</em> isolates worldwide. Various MPSP genotypes were detected with significant virulence variations. The present study provides the first in silico analysis for all globally published <em>T. orientalis</em> MPSP isolates to evaluate their phylogeny, diversity, and population structure.</div></div><div><h3>Methods</h3><div>All studies that tested <em>T. orientalis</em> isolates using PCR-MPSP protocols were systematically collected from various databases. <em>Theileria orientalis</em> MPSP-sequenced isolates on the GenBank were collected and the sequences were tested for their phylogenetic relatedness, genetic diversity, recombination, natural selection, and population structure using various software.</div></div><div><h3>Results</h3><div>The collected <em>T. orientalis</em>-MPSP isolates (<em>n</em> = 795) were clustered into 12 genotypes, including types 1 (Chitose), 2 (Ikeda), 3 (Buffeli), 4, 5, 7, 8, and N1-N5. The previously identified type 6 belonged to a separate species (<em>Theileria sinensis</em>). The previously identified type 9 was transferred to type 4. Two unidentified isolates from water buffaloes in India were clustered into a new suggested genotype “type N5”. Of the 12 genotypes, Ikeda (type 2) is the most virulent in cattle. However, a few clinical cases have also been linked to types 1 (Chitose) and 7. In water buffaloes, <em>T. orientalis</em> outbreaks have been linked to genotypes N2 and N5. Geographic mapping of various genotypes revealed the dispersal of types 1 and 3 worldwide. Overall, the 795 isolates comprised 532 haplotypes and displayed very high nucleotide (π = 0.14) and haplotype (Hd = 0.995) diversities. As a result, a very low sequence conservation value (C = 0.207) was determined. The twelve genotypes displayed comparable haplotype diversities accompanied by statistically significant negative Tajima's D and Fu's Fs values suggesting population expansion. A high value for the minimum number of recombination events (Rm = 65) was estimated for the 795 isolates, and this value varied from 0 to 23 at the genotype level. Most types also displayed significant positive selection (dn/ds ratio &gt; 1). This suggests that both recombination and positive selection occur in <em>T. orientalis</em> MPSP gene, which could explain the very high genetic diversity among various <em>T. orientalis</em> types. Different patterns were detected for the gene flow among <em>T. orientalis</em> populations from various hosts and geographies; however, there is evidence for the genetic relatedness between populations from neighbouring countries.</div></div><div><h3>Conclusion</h3><div>The high genetic polymorphism and different associated pathogenicity in <em>T. orientalis-</em>MPSP genotypes highlight the need for further investigations employing whole genome sequencing technology to provide accurate comparative gene-level analyses and help further understand their pathogenicity.</div></div>","PeriodicalId":19983,"journal":{"name":"Parasitology International","volume":"106 ","pages":"Article 103038"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasitology International","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S138357692500011X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background/objective

Theileria orientalis is a non-transforming Theileria species infecting cattle and water buffaloes. Several outbreaks of oriental theileriosis accompanied by considerable economic loss were documented in Asia, Australia, and New Zealand. The major piroplasm surface protein (MPSP) gene has frequently been used to molecularly characterize T. orientalis isolates worldwide. Various MPSP genotypes were detected with significant virulence variations. The present study provides the first in silico analysis for all globally published T. orientalis MPSP isolates to evaluate their phylogeny, diversity, and population structure.

Methods

All studies that tested T. orientalis isolates using PCR-MPSP protocols were systematically collected from various databases. Theileria orientalis MPSP-sequenced isolates on the GenBank were collected and the sequences were tested for their phylogenetic relatedness, genetic diversity, recombination, natural selection, and population structure using various software.

Results

The collected T. orientalis-MPSP isolates (n = 795) were clustered into 12 genotypes, including types 1 (Chitose), 2 (Ikeda), 3 (Buffeli), 4, 5, 7, 8, and N1-N5. The previously identified type 6 belonged to a separate species (Theileria sinensis). The previously identified type 9 was transferred to type 4. Two unidentified isolates from water buffaloes in India were clustered into a new suggested genotype “type N5”. Of the 12 genotypes, Ikeda (type 2) is the most virulent in cattle. However, a few clinical cases have also been linked to types 1 (Chitose) and 7. In water buffaloes, T. orientalis outbreaks have been linked to genotypes N2 and N5. Geographic mapping of various genotypes revealed the dispersal of types 1 and 3 worldwide. Overall, the 795 isolates comprised 532 haplotypes and displayed very high nucleotide (π = 0.14) and haplotype (Hd = 0.995) diversities. As a result, a very low sequence conservation value (C = 0.207) was determined. The twelve genotypes displayed comparable haplotype diversities accompanied by statistically significant negative Tajima's D and Fu's Fs values suggesting population expansion. A high value for the minimum number of recombination events (Rm = 65) was estimated for the 795 isolates, and this value varied from 0 to 23 at the genotype level. Most types also displayed significant positive selection (dn/ds ratio > 1). This suggests that both recombination and positive selection occur in T. orientalis MPSP gene, which could explain the very high genetic diversity among various T. orientalis types. Different patterns were detected for the gene flow among T. orientalis populations from various hosts and geographies; however, there is evidence for the genetic relatedness between populations from neighbouring countries.

Conclusion

The high genetic polymorphism and different associated pathogenicity in T. orientalis-MPSP genotypes highlight the need for further investigations employing whole genome sequencing technology to provide accurate comparative gene-level analyses and help further understand their pathogenicity.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Parasitology International
Parasitology International 医学-寄生虫学
CiteScore
4.00
自引率
10.50%
发文量
140
审稿时长
61 days
期刊介绍: Parasitology International provides a medium for rapid, carefully reviewed publications in the field of human and animal parasitology. Original papers, rapid communications, and original case reports from all geographical areas and covering all parasitological disciplines, including structure, immunology, cell biology, biochemistry, molecular biology, and systematics, may be submitted. Reviews on recent developments are invited regularly, but suggestions in this respect are welcome. Letters to the Editor commenting on any aspect of the Journal are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信