A Measurement Approach for Characterizing Temperature-Related Emissivity Variability in High-Emissivity Materials.

IF 3.4 3区 综合性期刊 Q2 CHEMISTRY, ANALYTICAL
Sensors Pub Date : 2025-01-16 DOI:10.3390/s25020487
Gloria Cosoli, Paolo Chiariotti, Beatriz García-Baños, Giuseppe Pandarese, Felipe L Peñaranda-Foix, Gian Marco Revel
{"title":"A Measurement Approach for Characterizing Temperature-Related Emissivity Variability in High-Emissivity Materials.","authors":"Gloria Cosoli, Paolo Chiariotti, Beatriz García-Baños, Giuseppe Pandarese, Felipe L Peñaranda-Foix, Gian Marco Revel","doi":"10.3390/s25020487","DOIUrl":null,"url":null,"abstract":"<p><p>The effective knowledge of emissivity is pivotal to obtain reliable temperature measurements through non-contact techniques like pyrometry and thermal imaging. This is fundamental in high-temperature applications since material emissivity strongly depends on temperature conditions. Given the recent attention in high-temperature applications, especially for replacing fossil-fuel-dependent heating with greener solutions in energy-intensive processes, renewed interest in characterizing materials radiant properties rose. This work presents a measurement procedure for characterizing the total emissivity of high-emissivity materials exploiting microwaves for heating the test material. The procedure grounds on a sequential approach, using a reference material of known emissivity (e.g., high-emissivity coating, already characterized sample holder, etc.) to derive the target material total emissivity. Uncertainty analysis is performed to provide a metrological characterization of the approach. The procedure is validated on target materials of known emissivity, focusing on high-emissivity materials commonly employed in microwave heating processes. Results are compatible with reference literature and material datasheets, demonstrating the validity of the proposed approach.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"25 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768453/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s25020487","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The effective knowledge of emissivity is pivotal to obtain reliable temperature measurements through non-contact techniques like pyrometry and thermal imaging. This is fundamental in high-temperature applications since material emissivity strongly depends on temperature conditions. Given the recent attention in high-temperature applications, especially for replacing fossil-fuel-dependent heating with greener solutions in energy-intensive processes, renewed interest in characterizing materials radiant properties rose. This work presents a measurement procedure for characterizing the total emissivity of high-emissivity materials exploiting microwaves for heating the test material. The procedure grounds on a sequential approach, using a reference material of known emissivity (e.g., high-emissivity coating, already characterized sample holder, etc.) to derive the target material total emissivity. Uncertainty analysis is performed to provide a metrological characterization of the approach. The procedure is validated on target materials of known emissivity, focusing on high-emissivity materials commonly employed in microwave heating processes. Results are compatible with reference literature and material datasheets, demonstrating the validity of the proposed approach.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Sensors
Sensors 工程技术-电化学
CiteScore
7.30
自引率
12.80%
发文量
8430
审稿时长
1.7 months
期刊介绍: Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信