Xiaobin Yang, Yushan Lou, Linyuan Song, Di Zhang, Yuzi Song, Jingxuan Liang, Zikuo Liu, Ce Wang, Zhao Zhao
{"title":"Inhibition mechanism of Microcystis aeruginosa in coculture of Lemna and Azolla: Insights from non-targeted Metabonomics.","authors":"Xiaobin Yang, Yushan Lou, Linyuan Song, Di Zhang, Yuzi Song, Jingxuan Liang, Zikuo Liu, Ce Wang, Zhao Zhao","doi":"10.1016/j.plaphy.2025.109529","DOIUrl":null,"url":null,"abstract":"<p><p>Microcystis aeruginosa, a harmful alga in cyanobacterial blooms, damages aquatic ecosystems. Species diversity may control the blooms by increasing ecosystem stability and resource utilization. The growth and photosynthetic systems of M. aeruginosa were investigated using the water from monocultures of Lemna aequinoctialis and Azolla imbricata group, as well as their mixtures. The highest rate of inhibition (84%) of M. aeruginosa was observed in the water excretions from the mixture of the two species across the three experimental groups. Greater disruption of cell membranes and a more significant decrease in the maximum electron transfer rate and photochemical quantum yield of M. aeruginosa were observed under mixed conditions compared to the monoculture, indicating the increased disruption of their photosynthetic systems in the mixed group. Liquid chromatography-mass spectrometry identified 479 and 431 differential metabolites in the mixed group compared to monocultures of L. aequinoctialis group and A. imbricata, respectively. Dihydrocapsaicin and 13-hydroxy-9-methoxy-10-oxo-11-octadecenoic acid, previously known to participate in oxidative stress and induce the secretion of benzoic acid to disrupt the cell membrane, were found to be abundant in the mixed group compared to the monoculture groups of L. aequinoctialis and A. imbricata. Our results showed that a mixture of L. aequinoctialis and A. imbricata is a potential novel antialgal agent to inhibit harmful algae.</p>","PeriodicalId":20234,"journal":{"name":"Plant Physiology and Biochemistry","volume":"220 ","pages":"109529"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology and Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.plaphy.2025.109529","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microcystis aeruginosa, a harmful alga in cyanobacterial blooms, damages aquatic ecosystems. Species diversity may control the blooms by increasing ecosystem stability and resource utilization. The growth and photosynthetic systems of M. aeruginosa were investigated using the water from monocultures of Lemna aequinoctialis and Azolla imbricata group, as well as their mixtures. The highest rate of inhibition (84%) of M. aeruginosa was observed in the water excretions from the mixture of the two species across the three experimental groups. Greater disruption of cell membranes and a more significant decrease in the maximum electron transfer rate and photochemical quantum yield of M. aeruginosa were observed under mixed conditions compared to the monoculture, indicating the increased disruption of their photosynthetic systems in the mixed group. Liquid chromatography-mass spectrometry identified 479 and 431 differential metabolites in the mixed group compared to monocultures of L. aequinoctialis group and A. imbricata, respectively. Dihydrocapsaicin and 13-hydroxy-9-methoxy-10-oxo-11-octadecenoic acid, previously known to participate in oxidative stress and induce the secretion of benzoic acid to disrupt the cell membrane, were found to be abundant in the mixed group compared to the monoculture groups of L. aequinoctialis and A. imbricata. Our results showed that a mixture of L. aequinoctialis and A. imbricata is a potential novel antialgal agent to inhibit harmful algae.
期刊介绍:
Plant Physiology and Biochemistry publishes original theoretical, experimental and technical contributions in the various fields of plant physiology (biochemistry, physiology, structure, genetics, plant-microbe interactions, etc.) at diverse levels of integration (molecular, subcellular, cellular, organ, whole plant, environmental). Opinions expressed in the journal are the sole responsibility of the authors and publication does not imply the editors'' agreement.
Manuscripts describing molecular-genetic and/or gene expression data that are not integrated with biochemical analysis and/or actual measurements of plant physiological processes are not suitable for PPB. Also "Omics" studies (transcriptomics, proteomics, metabolomics, etc.) reporting descriptive analysis without an element of functional validation assays, will not be considered. Similarly, applied agronomic or phytochemical studies that generate no new, fundamental insights in plant physiological and/or biochemical processes are not suitable for publication in PPB.
Plant Physiology and Biochemistry publishes several types of articles: Reviews, Papers and Short Papers. Articles for Reviews are either invited by the editor or proposed by the authors for the editor''s prior agreement. Reviews should not exceed 40 typewritten pages and Short Papers no more than approximately 8 typewritten pages. The fundamental character of Plant Physiology and Biochemistry remains that of a journal for original results.