Novel Ultrafiltration Polyethersulfone Membranes Blended with Carrageenan.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2025-01-13 DOI:10.3390/polym17020176
Saeed H Al Marri, Yehia Manawi, Simjo Simson, Jenny Lawler, Viktor Kochkodan
{"title":"Novel Ultrafiltration Polyethersulfone Membranes Blended with Carrageenan.","authors":"Saeed H Al Marri, Yehia Manawi, Simjo Simson, Jenny Lawler, Viktor Kochkodan","doi":"10.3390/polym17020176","DOIUrl":null,"url":null,"abstract":"<p><p>The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.1-4.0 wt.% CAR loadings in the casting solutions. The use of dimethylsulfoxide (DMSO), which is a bio-based and low-toxic solvent, is reported. Scanning electron microscopy, atomic force microscopy, water contact angle, porosity, and zeta potential measurements were used to evaluate the surface morphology, structure, pore size, hydrophilicity, and surface charge of the prepared membranes. The filtration performance of PES/CAR membranes was tested with bovine serum albumin (BSA) solutions. It was shown that CAR incorporation in the casting solutions notably increased hydrophilicity, porosity, pore size, surface charge, and fouling resistance of the prepared membranes compared with plain PES membranes due to the hydrophilic nature and pore-forming properties of CAR. The PES/CAR membranes showed a significant reduction in irreversible and total fouling during filtration of BSA solutions by 38% and 32%, respectively, an enhancement in the flux recovery ratio by 20-40%, and an improvement in mechanical properties by 1.5-fold when compared with plain PES membranes. The findings of the present study indicate that CAR can be used as a promising additive for the development of PES UF membranes with enhanced properties and performance for water treatment applications.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":"17 2","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11768257/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym17020176","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.1-4.0 wt.% CAR loadings in the casting solutions. The use of dimethylsulfoxide (DMSO), which is a bio-based and low-toxic solvent, is reported. Scanning electron microscopy, atomic force microscopy, water contact angle, porosity, and zeta potential measurements were used to evaluate the surface morphology, structure, pore size, hydrophilicity, and surface charge of the prepared membranes. The filtration performance of PES/CAR membranes was tested with bovine serum albumin (BSA) solutions. It was shown that CAR incorporation in the casting solutions notably increased hydrophilicity, porosity, pore size, surface charge, and fouling resistance of the prepared membranes compared with plain PES membranes due to the hydrophilic nature and pore-forming properties of CAR. The PES/CAR membranes showed a significant reduction in irreversible and total fouling during filtration of BSA solutions by 38% and 32%, respectively, an enhancement in the flux recovery ratio by 20-40%, and an improvement in mechanical properties by 1.5-fold when compared with plain PES membranes. The findings of the present study indicate that CAR can be used as a promising additive for the development of PES UF membranes with enhanced properties and performance for water treatment applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信