Seoeun Oh, Soo-Yong Park, Hyung Il Seo, Ildoo Chung
{"title":"L-Threonine-Derived Biodegradable Polyurethane Nanoparticles for Sustained Carboplatin Release.","authors":"Seoeun Oh, Soo-Yong Park, Hyung Il Seo, Ildoo Chung","doi":"10.3390/pharmaceutics17010028","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background and objectives:</b> The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; <b>Methods:</b> In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone. LTPU NPs were fabricated by water-in-oil-in-water double emulsion solvent evaporation methods; <b>Results:</b> The polymerization of LTPU was confirmed by <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, and FT-IR spectroscopies. The molecular weights and polydispersity, determined with GPC, were 28,800 g/mol and 1.46, respectively. The morphology and size of NPs, characterized by DLS, FE-SEM, TEM, and confocal microscopy, showed smooth and spherical particles with diameters less than 200 nm; <b>Conclusions:</b> In addition, the drug loading, encapsulation efficiency, and drug release profiles, using UV-Vis spectroscopy, showed the highest encapsulation efficiency with 2.5% carboplatin and sustained release profile.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769003/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17010028","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background and objectives: The use of polymeric nanoparticles (NPs) in drug delivery systems offers the advantages of enhancing drug efficacy and minimizing side effects; Methods: In this study, L-threonine polyurethane (LTPU) NPs have been fabricated by water-in-oil-in-water emulsion and solvent evaporation using biodegradable and biocompatible LTPU. This polymer was pre-synthesized through the use of an amino acid-based chain extender, desaminotyrosyl L-threonine hexyl ester (DLTHE), where urethane bonds are formed by poly(lactic acid)-poly(ethylene glycol)-poly(lactic acid) (PLA-PEG-PLA) triblock copolymer and 1,6-hexamethylene diisocyanate (HDI). LTPU is designed to be degraded by hydrolysis and enzymatic activity due to the presence of ester bonds and peptide bonds within the polymer backbone. LTPU NPs were fabricated by water-in-oil-in-water double emulsion solvent evaporation methods; Results: The polymerization of LTPU was confirmed by 1H-NMR, 13C-NMR, and FT-IR spectroscopies. The molecular weights and polydispersity, determined with GPC, were 28,800 g/mol and 1.46, respectively. The morphology and size of NPs, characterized by DLS, FE-SEM, TEM, and confocal microscopy, showed smooth and spherical particles with diameters less than 200 nm; Conclusions: In addition, the drug loading, encapsulation efficiency, and drug release profiles, using UV-Vis spectroscopy, showed the highest encapsulation efficiency with 2.5% carboplatin and sustained release profile.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.