Monitoring M-Protein, Therapeutic Antibodies, and Polyclonal Antibodies in a Multiparametric Mass Spectrometry Assay Provides Insight into Therapy Response Kinetics in Patients with Multiple Myeloma.
Charissa Wijnands, Peter G A Karel, Jolein Gloerich, Gad Armony, Anastasia Tzasta, Corrie M de Kat Angelino, Luciano Di Stefano, Vincent Bonifay, Theo M Luider, Martijn M VanDuijn, Sandra J Croockewit, Elizabeth A de Kort, Daan A R Castelijn, Claudia A M Stege, Hans J C T Wessels, Alain J van Gool, Niels W C J van de Donk, Joannes F M Jacobs
{"title":"Monitoring M-Protein, Therapeutic Antibodies, and Polyclonal Antibodies in a Multiparametric Mass Spectrometry Assay Provides Insight into Therapy Response Kinetics in Patients with Multiple Myeloma.","authors":"Charissa Wijnands, Peter G A Karel, Jolein Gloerich, Gad Armony, Anastasia Tzasta, Corrie M de Kat Angelino, Luciano Di Stefano, Vincent Bonifay, Theo M Luider, Martijn M VanDuijn, Sandra J Croockewit, Elizabeth A de Kort, Daan A R Castelijn, Claudia A M Stege, Hans J C T Wessels, Alain J van Gool, Niels W C J van de Donk, Joannes F M Jacobs","doi":"10.3390/pharmaceutics17010135","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Multiple Myeloma (MM) is a hematologic malignancy caused by clonally expanded plasma cells that produce a monoclonal immunoglobulin (M-protein), a personalized biomarker. Recently, we developed an ultra-sensitive mass spectrometry method to quantify minimal residual disease (MS-MRD) by targeting unique M-protein peptides. Therapeutic antibodies (t-Abs), key in MM treatment, often lead to deep and long-lasting responses. However, t-Abs can significantly decrease the total polyclonal immunoglobulin (Ig) levels which require supplemental IgG infusion. Here, we demonstrate the simultaneous monitoring of M-proteins, t-Abs, and polyclonal Ig-titers using an untargeted mass spectrometry assay, offering a comprehensive view of therapy response. <b>Methods:</b> Sera collected between 2013 and 2024 from four patients and cerebrospinal fluid (CSF) from one patient who received various t-Abs were analyzed with MS-MRD. M-protein sequences were obtained with a multi-enzyme de novo protein sequencing approach. Unique peptides for M-proteins and t-Abs were selected based on linearity, sensitivity, and slope coefficient in serial dilutions. Ig constant regions were monitored using isotype-specific peptides. <b>Results:</b> The MS-MRD multiplex analysis provided detailed information on drug concentrations and therapy response kinetics. For example, in two patients with refractory disease over five lines of therapy, the MS-MRD analysis showed that the deepest responses were achieved with bispecific t-Ab (teclistamab) treatment. M-protein and t-Ab were also detectable in the CSF of one patient with MS-MRD. <b>Conclusions:</b> This proof-of-concept study shows that the multiplex monitoring of the M-protein, any t-Ab combination, and all Ig-isotypes within one mass spectrometry run is feasible and provides unique insight into therapy response kinetics.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":"17 1","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11769374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics17010135","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Multiple Myeloma (MM) is a hematologic malignancy caused by clonally expanded plasma cells that produce a monoclonal immunoglobulin (M-protein), a personalized biomarker. Recently, we developed an ultra-sensitive mass spectrometry method to quantify minimal residual disease (MS-MRD) by targeting unique M-protein peptides. Therapeutic antibodies (t-Abs), key in MM treatment, often lead to deep and long-lasting responses. However, t-Abs can significantly decrease the total polyclonal immunoglobulin (Ig) levels which require supplemental IgG infusion. Here, we demonstrate the simultaneous monitoring of M-proteins, t-Abs, and polyclonal Ig-titers using an untargeted mass spectrometry assay, offering a comprehensive view of therapy response. Methods: Sera collected between 2013 and 2024 from four patients and cerebrospinal fluid (CSF) from one patient who received various t-Abs were analyzed with MS-MRD. M-protein sequences were obtained with a multi-enzyme de novo protein sequencing approach. Unique peptides for M-proteins and t-Abs were selected based on linearity, sensitivity, and slope coefficient in serial dilutions. Ig constant regions were monitored using isotype-specific peptides. Results: The MS-MRD multiplex analysis provided detailed information on drug concentrations and therapy response kinetics. For example, in two patients with refractory disease over five lines of therapy, the MS-MRD analysis showed that the deepest responses were achieved with bispecific t-Ab (teclistamab) treatment. M-protein and t-Ab were also detectable in the CSF of one patient with MS-MRD. Conclusions: This proof-of-concept study shows that the multiplex monitoring of the M-protein, any t-Ab combination, and all Ig-isotypes within one mass spectrometry run is feasible and provides unique insight into therapy response kinetics.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.